

Global Methane Genetics initiative

Sheep Working Group

Organisation: Yvette de Haas, Michael Aldridge

November 11, 2025

Welcome!

■ Aim

- Update what's happening in Global Methane Genetics
- Network building
- Share: knowledge & hurdles
- Discussion: gaps & needs

Agenda

- Update from GMG (Birgit)
 - data sharing & data base development
- Update ICAR Feed&Gas wikipage (Birgit)
- Update sniffer SOP/testing center for methane recording devices (Yvette)
- Update from the GMG sheep project(s) (Michael)
- Update methane-projects outside GMG (all)
- Open discussion about research gaps (all)
- AOB

Global Methane Genetics initiative

Investment of 27M US\$

25 countries, 50 partners, 25 breeds

Methane pheno- & genotypes ~110k cattle & sheep, ~20k microbiome

Dairy:

Holstein (~42k)
Jersey (~8k)
(Nordic) Red Breeds (~7.3k)
Brown Swiss (~3.3k)

Develop protocols
Phenotyping
World-wide sharing
Genetic evaluation

Beef:

North America (~6k)
Australia, Ireland,
UK, NZ (~18.5k)

Sheep: world-wide reference population
Australia & New Zealand
UK & Ireland
Uruguay (~17k)

Africa

Local breeds & crosses (~4k)

Latin America

Beef (~7k)

Microbiome:

World-wide reference population (~20k samples)

Update GMG

- Startup meeting Innsbruck
- Second newsletter ¹⁾.
- Contracts
- Proposal development: small holder farms, Asia & buffalos
- Framework of adoption & incentivization system for genetic selection as methane mitigation tool

GMG data sharing & data base

- Two data sharing agreements: 1) GMG paid data and 2) exchange for record contribution. Will be sent for signature to partners
- Database
 - Business requirement and review existing database
 - June three offers to build August contracted, weekly meetings, tomorrow consultation meeting

→planned delivery February

Architecture & Data Flow

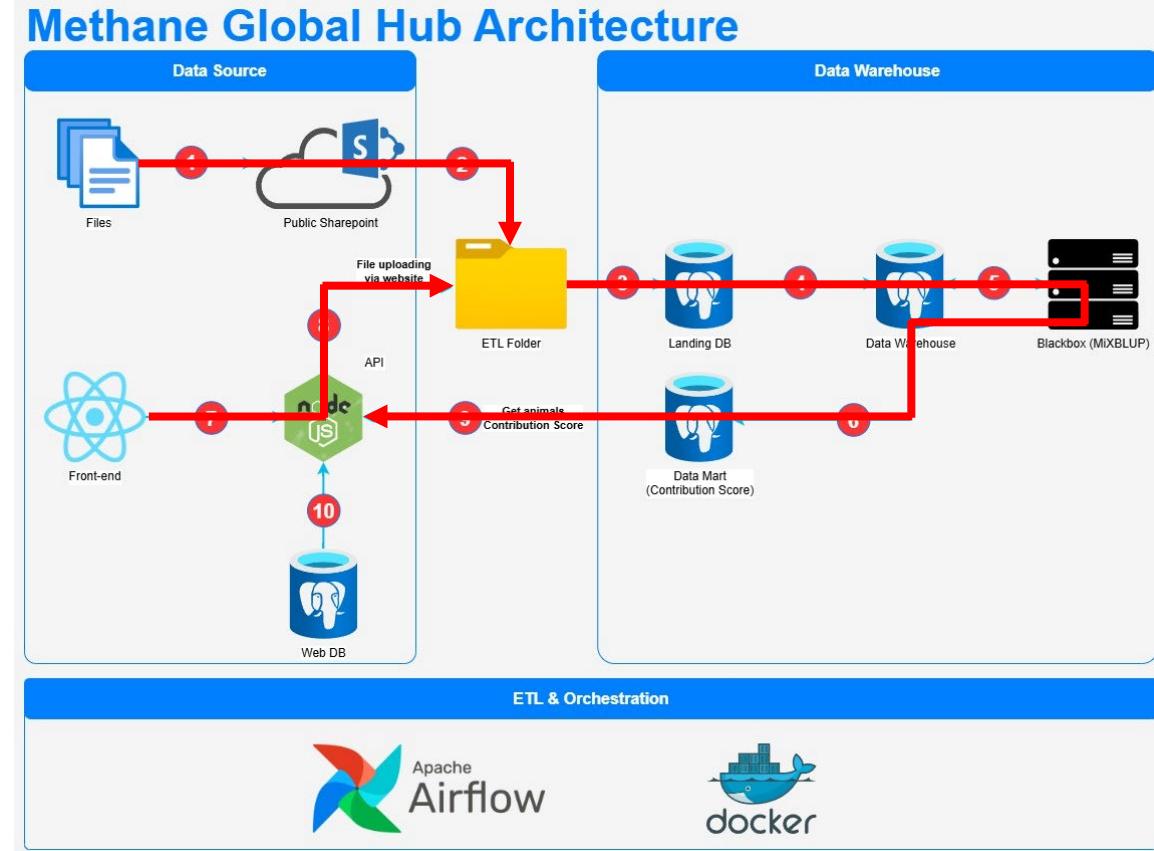
→ User upload Via SharePoint: 1 → 2

→ User upload Via Web: 7 → 8

→ Data processing: 3 → 4 → 5 → 6 → 9

Landing DB

Data Warehouse


Data Mart
(Contribution Score)

- ✓ Storing a copy of imported files
- ✓ Validate & cleanse data

- ✓ Centralized methane data store
- ✓ Keeping historical version of data records
- ✓ MiXBLUP integration
- ✓ Contribution score

- ✓ Dedicated database for data extraction

WAGENINGEN
UNIVERSITY & RESEARCH

ICAR Feed&Gas wikipage

- [https://wiki.icar.org/index.php/Section 20 %E2%80%93 Methane Emission for Genetic Evaluation](https://wiki.icar.org/index.php/Section_20_%E2%80%93_Methane_Emission_for_Genetic_Evaluation)
- Portable accumulation chambers (information for sheep)
- GreenFeed – do you have experience with sheep – let us know!
- Wearables
- Microbiome protocols coming soon
- Activities: [https://wiki.icar.org/index.php/Section 20:_Activities](https://wiki.icar.org/index.php/Section_20:_Activities)
- Activities – happy to receive info about projects & events!

Global Methane Genetics initiative

Testing centre for methane recording devices

Standard Operating Procedures (SOP) - Sniffers

Yvette de Haas, Chantal van Gemert, Lisa Büttgen

Specifications on ICAR Wiki

ICAR Wiki: <https://wiki.icar.org/index.php/Guidelines>

ICAR WIKI

Search ICAR Wiki

Anonymous

Section 20 – Methane Emission for Genetic Evaluation

[Page](#) [Discussion](#) [View source](#) [History](#)

This is the approved revision of this page; it is not the most recent. [View the most recent revision](#).

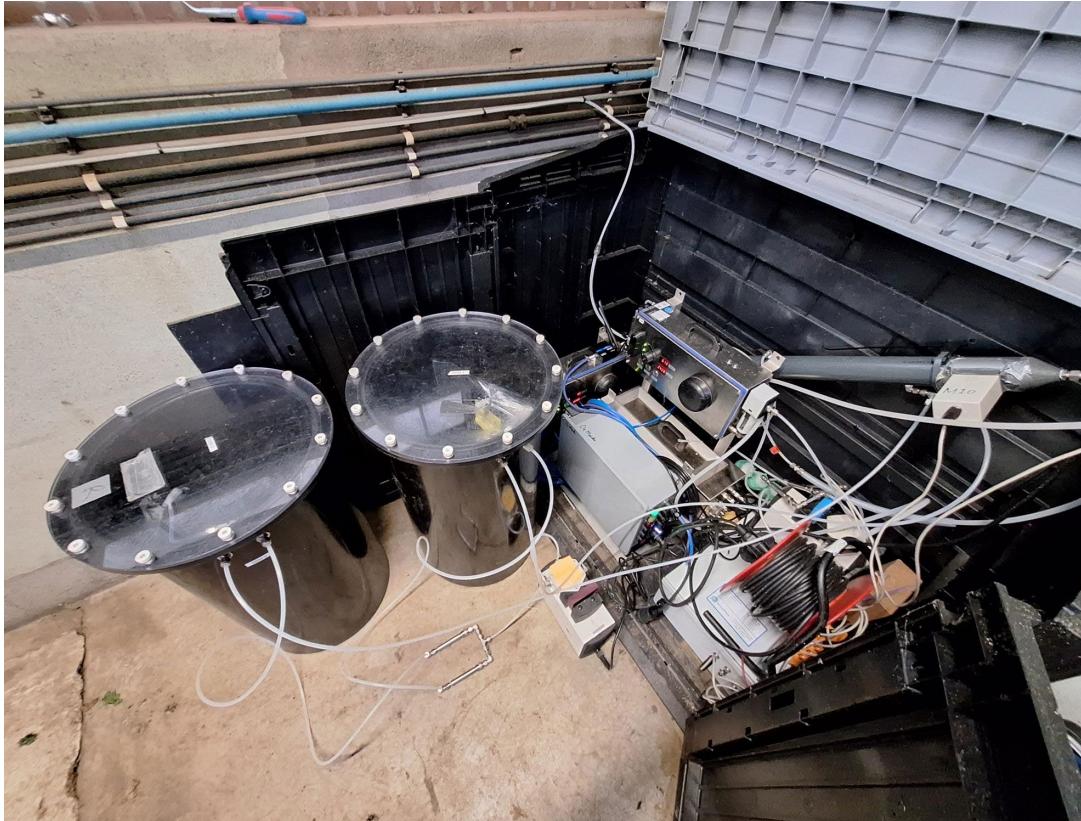
NOTE: This version of Section 20 has been approved by the working group's Chair. Please be aware that further revisions may occur before final review and approval by the Board and ICAR members per the [Approval of Page Process](#).

Navigation

- Guidelines
- Table of Contents
- Advanced search
- Recent changes
- Random page
- Help about MediaWiki
- ICAR Wiki SOP

Contents

- 1 Introduction
- 2 Disclaimer
- 3 Scope
- 4 Sub-sections
- 5 Summary of Changes
- 6 References


Set up lab facility

Set up on farm facility

Set up lung method (= Gold Standard)

ICAR test facility

ICAR Validated Sensor Systems

Beyond official milk recording, obtained with ICAR certified devices, results from devices also supports farm management by providing insights into production, animal health, welfare, and sustainability, often enhanced by mathematical models and algorithms. Given the diversity of applications, a single evaluation protocol is impractical; instead, ICAR offers claim validation for solutions outside official milk recording to ensure user trust while allowing flexibility in development.

ICAR validation ensures that a device (e.g. [milk meters for cows and sheep/goats](#), [automatic milking system \(AMS\) device](#), [milk analysis device](#), on farm at/in line milk analyzer, sensor device) meets [manufacture performance](#) claims through ICAR-approved test plans conducted by a qualified ICAR Test Center.

Successful validation confirms that the system can reliably deliver quality data when used correctly, leading to the award of an [ICAR Certificate of Validation](#).

- First for sniffers
- Later maybe also for other methane devices?
- ICAR Board meeting early last week

Apply now

Submit the application form to request a validation now.

[Application form](#)

The application form should be accompanied by the requested documentation:

- Clear description of all components of system – ID, components, software, etc.
- System technical manual
- Farm operator manual
- Internal research and validation studies
- Peer reviewed publications
- Software manual for use of the system devices
- Installation procedure
- Routine test or periodic checking procedures for service technicians
- Technical characteristics, drawings and 2D/3D pictures of the device

Validation procedure

1. The applicant submits an [application form](#)
2. The application is reviewed, and the Test Centre is designated.
3. The Test Centre prepares the test plan, detailing the timeline and associated costs.
4. ICAR provides the applicant with an umbrella contract and invoice for test fees, along with the test plan.
5. Testing begins upon signing of the contract by the applicant and full payment of the test fees.
6. Upon test completion, ICAR disseminates the report to the MRSD Sub-Committee for review, comments, and recommendations.
7. ICAR forwards the report to the applicant and issues the official ICAR Certificate upon successful completion of the test.
8. The certified device/system is listed on the ICAR website.

Update GMG Sheep project(s)

- Michael Aldridge

Update on GMG sheep project: CleanBreeding

D.J. Brown, . M.N. Aldridge,

**Global
Methane
Genetics
initiative**

WAGENINGEN
UNIVERSITY & RESEARCH

In Partnership with

BEZOS
EARTH
FUND

Global
Methane
Hub

Key outcomes

- Collation of historical data into a combined dataset
- A minimum of 16,000 new phenotypes for methane on genotyped animals
 - Feed intake traits and microbiome through collaboration
- Accurate breeding values and indexes for all countries
- New proxy measures of methane and possibly feed intake to deploy to use as selection criteria
- Development of training and knowledge transfer programs and resources

Recording aims

Project Lead: Daniel Brown

Program Leaders:

- Australia Dr Micheal Aldridge
- Uruguay Dr Gabriel Ciappesoni
- New Zealand Dr Suzanne Rowe
- United Kingdom Dr Nicola Lambe
- Ireland Dr Noirin McHugh

Country	Breed Type	Y1	Y2	Y3	Y4	Total
Australia	Merino		2,000	2,000		4,000
	Maternal		1,000	1,000		2,000
	Terminal		700	700		1,400
Uruguay	Merino	170	320	320	100	910
	Texel	100	200	200	100	600
	Dohne	100	200	200	100	600
New Zealand	Corriedale	130	280	280	200	890
	Merino	100	500	500	100	1,200
	Maternal Comp	200	500	500	200	1,400
United Kingdom	Texel	200	500	500	200	1,400
	Maternal					0
	Terminal	300	300	300	300	1,200
Ireland	Maternal Comp		250	250		500
	Terminal Comp		250	250		500
total		1,300	7,000	7,000	1,300	16,600

Contracting and IP principles

Operational plan

- Project structure and programs within countries
- Reference population to drive international genetic improvement for CH₄ and FI
- 16,000 new methane phenotypes and genotypes
- Align trait recording protocols and guidelines
- Breeding program development
- Include the data in the international database
- Accurate breeding values and indexes for CH₄
- Development of training and knowledge transfer programmes and resources

Animal ethics approval and expressions of interest

- Each country requires their own ethics approval
- Amendments or new submissions have been made
- For industry animals, breeders are being approached or requested to submit EOIs

Coming 6 months

- Each country already has capacity to start measuring
- New PACs are being constructed or ordered
- Unclear what to replace aging Eagle-2 devices with
- Phenotyping and genotyping of new animals
 - Planned for 2026: Australia (3,700), Uruguay (1,000), New Zealand (1,500), UK (300), Ireland (500). Total of 7,000 of the 16,000 to be measured in the project.

What else should we do to accelerate progress? i.e. research gaps

- Trait definition – ratio trait? Which trait in the breeding goal?
Challenge inclusion methane in breeding goals
- GxE feed additives
- Beef on dairy
- Genetic correlation between methane & feed intake/efficiency
- Measuring methane in young (heifer) animals
- Software QC, data editing

Open discussion – research & knowledge gaps

- ...

Thanks for your
attention &
contributions!

gmg@wur.nl

Newsletter:

<https://www.wur.nl/en/project/global-methane-genetics-initiative.htm?wmstepid=thank you>

Global Methane Genetics initiative

Led by

WAGENINGEN
UNIVERSITY & RESEARCH

In Partnership with

BEZOS
EARTH
FUND

Global
Methane
Hub

