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U Content of the presentation

=

What is the mid-infrared spectroscopy
Equation development
Some examples
1. Body condition score change
2. Nitrogen use efficiency
3. Methane emissions
4. Applications
1. Implementation
2. Share eqguations across countries
5. Conclusions
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¥ What is MIRS?
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¢ The data
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¢ Prediction methods

Linear association

Non-linear association

Decision trees

- Partial Least Squares
Regression (PLSR)

- Ridge regression

- Lasso

- Elastic Net

- Principal Component
Regression (PCR)

- Spike and Slab

Layer 1

Layer 2

node node Layer 3

- Neural Network (NN) - Random Forest

- Projection Pursuit - Boosting Decision Tree

Regression (PPR)

Ensamble models
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Why MIRS?

= Routinely used during milk recording
» Cheap and fast
= A single spectra useful to predict multiple traits
= Application in
= Milk related traits
= Animal related traits
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Validation
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Calibration Validation

* Cow independent CV
* Experiment indepenent CV

* Herd independent CV
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Validation

Cow independent CV
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Predicting 28-d DMI

e M1, milk mid-infrared
(MIR) spectral data only

* M2, energy sinks

* M3, MIR data and energy
sinks

Models M2 and M3 also

included parity class and first-

and second-order terms on

age at calving and DIM.
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https://www.sciencedirect.com/science/article/pii/S0022030224009172
https://www.sciencedirect.com/science/article/pii/S0022030224009172

¢ How useful is actually the MIR?

Example with body condition score change prediction
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using routinely available milk mid-infrared spectra and machine learning technigues - ScienceDirect



https://www.sciencedirect.com/science/article/pii/S0022030223001947
https://www.sciencedirect.com/science/article/pii/S0022030223001947

¢ How useful is actually the MIR?

Example with body condition score change prediction
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¢ How useful is actually the MIR?

Example with body condition score change prediction

2,10
2,00
1,90
A
a 1,80
nd
1,70 °
1,60
1,50

spectra only DIM only DIM + spectra
Prediction variable

PLSR
O NN
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¢ How useful is actually the MIR?

Example with body condition score change prediction

2,10
2,00
1,90

a
o 1,80
x

1,70 °
1,60
1,50

spectra only DIM only DIM + spectra
Prediction variable

PLSR
o NN
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¢ How useful is actually the MIR?

Example with body condition score change prediction
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How useful is actually the MIR?

Example with body condition score change prediction

0,90
0,88 n
0,86

A 0,84

ol

X 0,82
0,80
0,78 u

0,76
DIM only DIM + spectra

Prediction variable

PLSR
HNN
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U Prediction of nitrogen use efficiency

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

= NUE = (N in milk + N in the conceptus + N used for the growth + N stored in
the reserves) / (N intake + N mobilized from the reserves)

Ceogosc

AcricuLture ano Foop DeveLopyvent Auraortmy
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https://www.sciencedirect.com/science/article/pii/S0022030224006441

Agroscope

U Prediction of nitrogen use efficiency

4 fold CV
NN algorithm

Trait Prediction variable Spectra type

Morning Evening Morning and

evening

RMSEcv! R?Z RPIQ RMSEcv R?2 RPIQ RMSEcv R?Z RPIQ

NUE Spectra 3.167 058 229 3.12¢ 058 232 3.02° 0.61 240
Spectra + MY 2.68° 059 270 2.59° 0.71 2.79 | 2.49¢ 0.74 2.90
Spectra + DIM 3.12° 058 231 3.10¢ 059 233 2098° 0.61 243

Spectra+ MY +DIM  2.66° 0.69 272 2.64° 0.71 2.74 | 2.49¢ 0.74 2.90

Spectra + MY + par 2.59° 0.84 2.80 2.58° 0.72 2.80 | 2.50¢ 0.74 2.39

Spectra + MY +par+  2.62° 0.71 276 2.67° 059 2.71 | 2.48¢ 0.74 292
DIM

Name of the presentation | Conference
Sender

16



Prediction of nitrogen use efficiency

Farm independent CV

Trait and n! Mean SD PLSR NN

farm ID

RMSEV R2 Slope RPIQ RMSEV RZ Slope RPIQ
(SE) (SE)

_ Previously
o R2 of 0.74

0.46 118
(0.03)

1 893 1903 331 490 0.10 §0.25 0.88 643 0.14

2 1,023 2347 460 417 0.31 §0.67 138 4.87 0.18

3 1,009 2133 427 523 0.07 §0.28 123 485 0.25 J0.41 133

(0.02)

4 572 2697 3.52 537 0.28 §0.79 0.82 5.62 0.24 §0.67 0.78

(0.05) (0.05)
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¢ Prediction of methane - Data

« 93,888 individual methane spot measures (>2 minutes)
« 384 lactations from 277 dairy cows

n=20
A
r b €easasc
A Methane A C—
4 N f \ Acnicvrrurs an Foop Deveropwent Avriorrry
n=10 n=10
-6 0) +6
AM & PM Milk sample ~ AM only
w * Yield & composition PM only
“ e Spectrum - AM+PM
5 « Days post calving _  AM&PM
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https://www.sciencedirect.com/science/article/pii/S0022030223006562
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U Prediction of methane - Approach

One experiment out

»
\ 4

Methane= j (spectrum, days in milk, yield, fat%, protein %)

Partial least squares or neural networks
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¢ Prediction of methane - Results

u=323.4 g/d

o=75.29g/d

Average of 30 spot measures to +6 days
* 111 minutes

Repeatability = 28%

Little difference
« AM v PM, neural networks v partial least squares
Flanking 6 days > previous 6 days > subsequent 6 days

Name of the presentation | Conference
Sender

21



¢ Prediction of methane — results

Using NN, average AM and PM spectra, and flanking 6 days

Model

Spectra

DIM

Yield

Composition

DIM + yield

DIM + composition
Yield + composition

DIM + yield + composition

No spectra With spectra
0.55 (0.07)
0.32 (0.13) 0.55 (0.06)
0.10 (0.18) 0.64 (0.05)
0.32 (0.13) 0.57 (0.06)
0.52 (0.10) 0.64 (0.06)
0.41 (0.10) 0.55 (0.06)
0.32 (0.07) 0.62 (0.05)
0.54 (0.09) 0.64 (0.05)
—_—
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¢ Prediction of methane — new validation

Number of records

Test 1715

Train 3047 %

0 1000 2000 3000 4000
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¢ Prediction of methane — new validation

« Calibration _ E
e« N=3,047 S ]
e From 2020 to 2022 s
@] g ]
 Validation _
e N=1,715 S g
* From 2023 :
ceogoso = | T
Calibration Validation

AGRICULTURE AND FUOD DE\"ELUPMENT AUTHURITY

Dataset
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¢ Prediction of methane — new validation

0.50 1

0.251

PC2

0.00

-0.251

0.0

0.5

dataset

*  Calibration

& Yalidation
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Fredicted

Prediction of methane — new validation

2007

4507

4007

« Correlation between
. actual and predicted of
' e 0.38 *

 Root mean square
error of 78.76 g/d

100 200 300 400

* Correlation in the training dataset of 0.64
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Fredicted

¢

Low 10%
emitting cows

High 10%
emitting cows
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Mean methane
predicted high 10%
emitting cows =
402.59 g/d

Mean methane
predicted low 10%
emitting cows =
358.29 g/d

Name of the presentation | Conference
Sender

27



¢ Prediction of methane — new validation

450
400
350
3,300
chzso
& 200
S 150
= 100
50

> 1 sd from mean between 1 and -1 sd < 1 sd from mean
from mean

Actual CH4 mPredicted CH4
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Considerations

» Spectra provides additional information to just animal data
= Different spectra available (AM and PM)

= Different ways of combining the spectra and the phenotype
= Validations scenarios essentials to have realistic results

» Often accuracies of prediction are relatively low

= Ability in identify high and low emitting cows

= Ability in identifying groups of cows
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Application

How to use it for farm milk recording?
LEM
v \
!_ /
(e

= Different protocolos across farms
= Collection of both morning and evening milk
= Collection of just morning milk
= Collection of just evening milk
= One time collection of just morning milk, following time collection of evening milk
= Milking robots
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Comparison of the mid-infrared spectra and prediction equations developed from morning and evening

milk samples from twice-a-day milked dairy cows - ScienceDirect



https://www.sciencedirect.com/science/article/pii/S0022030224012669
https://www.sciencedirect.com/science/article/pii/S0022030224012669
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¢ Data

» 199,288 morning spectrum
» 199,288 evening spectrum
= 2,602 cows

= From 2016 to 2020
=/ Teagasc research farms

ceogosc

AGR[CULTURE AND FDOD DEV'EIJOPM.ENT AUTHORITY

0.2 7

Principal component 2

-0.2 7

0.0 7

A

-1.0 -0.5 0.0 0.5

Principal component 1

Red = Morning
Blue = Evening
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Analyses

* Internal correlation between morning wavelength values vs internal correlation
between evening wavelength values

= Difference between morning and respective evening wavelength values
= Pearson correlation between morning and respective evening wavelength values
= Quantified for

= Entire dataset
= Within lactation stage, farm, year
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U Analyses

= Prediction equations for nitrogen use efficiency (NUE)

* NUE = (N in milk + N in the conceptus + N used for the growth + N stored in the reserves) /
(N intake + N mobilized from the reserves)

Predicted from equations

N Morning developed on
. f\ ﬂ Morning spectra
g °] K K \\ Evening spectra
<0 / VV"’\/&J& | Weighted morning and evening
Wavenumber
Evening

Morning spectra
Evening spectra
Weighted morning and evening

Absorbance
00 01 02 03

T T T T T T
0 100 200 300 400 500

Wavenumber

o
o
0
b
w
0
e
o
<
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¢ Results

Morning Evening

1.0
Internal relationships among the absorbance values for - .
the morning spectra differed (P < 0.05) from those
among the absorbance values for the evening spectra

Iﬁ—ﬂ !%L_!J

0.0

. -0.E
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¢ Results
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¢ Results

Protein Fat
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¢ Results

Correlation < 5 to 60 DIM (grey line)
within = 61 to 120 DIM (black line)
lactation [P 121 to 180 DIM (red line)
3 181 to 240 IM ( line)
stage 240 to 305 DIM (green line)
0.2
o S E PP SEEE E i E PP s
Wavelength (cm™)
Consistent profiles
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Results

| Calibration | Validation | | r | RMSE _

Morning
Evening

Average
Evening

Morning

Average

Morning 0.70 3.492
Morning 0.62 3.85P
Morning 0.67 3.63¢
Evenin(::j 0.70 3.462
Evening 0.66 3.85P
Evening 0.67 3.79P
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Application

How to use it for farm milk recording?

= Distinct internal relationships among the absorbance values for morning and evening milk
spectra

= Certain spectral regions exhibit substantial differences in absorbance values between morning
and evening milk samples

» Other spectral regions had weak correlations between the absorbance values of morning and
evening spectra

= More pronounced differences in early lactation

» Variability in absorbance values at different wavelengths between morning and evening samples
can influence the accuracy of predicting animal-related traits from milk MIR
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U Share equations across countries
Spectra standardization

Instrument
A *DecC
R Raw MIR spectra B Standardized MIR spectra
30 304
20 204
) 104
"‘T o1
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E
= 101
20
30 -304 ]
-30 =20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Dim 1 (43.37%) Dim 1
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s 5
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<m Mensching et al.: DAILY STANDARDIZATION OF MID-INFRARED SPECTRA
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https://www.sciencedirect.com/science/article/pii/S0022030225002711
https://www.sciencedirect.com/science/article/pii/S0022030225002711

U Share equations across countries
Spectra standardization

0.025 -~ - -t
A 'Not Standardized Spectra’
‘Standardized Spectra’
0.02 - *  ‘'Master Spectra’
0.015 -

0.01 - x ‘
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g 0 A‘ A A
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s
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Share equations across countries
Differences in the phenotype

Draiby BCS change

0 5 10
Wesk of lactation

Mean and SD of daily ABCS
Canadian cows -2.30 x 1073 and 4.26 x 1073 BCS units
Irish data were -=1.19 x 1073 and 2.00 x 1073 BCS units

Canadian daily BCS
change (black
dashed-dotted line)

Irish daily BCS
change (gray
continuous line)
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https://www.sciencedirect.com/science/article/pii/S002203022401110X
https://www.sciencedirect.com/science/article/pii/S002203022401110X

U Share equations across countries
Differences in the phenotype

Irish data to predict Canadian data

Canadian data to predict Canadian data

Pretreatment S5td  Method RMSEV2Z, 3 Bias? r Slope (SE) RPIQ
Calibration  Pretreatment Method RMSEV2,3 Bias?(SD) r(SD) Slope RPIQ None No PLSE 4992 3.98 0.80 J1.83(0.012) 0.85
(SD) (SE) (SD)
- - h - -
Canadian only None PLSR 1.ﬁsﬂ(0.025]| 0.00 0.92 1.00 254 NN 3.52 1.84 078 1171(0.012) 121
(0.041) §  (0.006) § (0.008)F (0.03) First derivative No PLSR 341¢ 104 | 067 [1.31(0.013) 125
NN 1.47¢(0.038)§ 0.00 0.94 1.00 2.91 ) 4 §
0oenl wos |oosl 0o NN 357 066 | 062 [1.67(0.019) 119
First PLSR  1.70°(0.032)f 0.00 092 1.00 251 None Yes PLSR 11.17¢ 10.85] 0.0 [0.86(0.006) 0.38
derivative (0.048)f§ (0.003) J (0.007)] (0.05)
) ) NN 6.88° 629 | 078 []0.80(0.006) 0.62
NN 1.47¢(0.021)§ 0.00 0.94 1.00 290
(0.044)§ (0.002) § (0.004)F (0.04) First derivative Yes PLSR 5.862 459 | 067 J]0.62(0.006) 0.73
No bias, slope of 1, r > 0.92 NN 5.10" 378 | 062 J0.78(0.009)] 084

Large bias, slope largly different from 1, r <0.81

Frizzarin et al., 2024
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Conclusions

= MIR spectra of milk is already available in many countries
= Pipeline already existing
= No extra cost in collecting new data

» Prediction equations not always easy to develop for animal features (e.g., methane
emissions, NUE)

= Difficulties in implementation when different protocols exist for milk recording

= Difficult of sharing equations across countries if no spectra standardization and if
very different production systems (different phenotypes)

Name of the presentation | Conference 45
Sender



Thank you for your attention

First name Last name
firstname.lasthame@agroscope.admin.ch
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