

Technical Specification

Get in Touch

Sensor Performance

	CH ₄	CO ₂	O ₂	H ₂	NO
Sensor technology	NDIR	NDIR	Paramagnetic	Electrochemical	Electrochemical
Sensor range	0 to 1000ppm	0 to 5000ppm	0 to 100%	0 to 1000ppm	0 to 200ppm
Response time	T90 = <30 seconds from sample inlet	T90 = <30 seconds from sample inlet	T90 = <30 seconds from sample inlet	T90 (s) from zero to 400ppm <30	T90 (s) from zero to 50ppm NO <30
Operating temperature	5°C to 40°C / 41°F to 104°F				
Humidity	0-95% non-condensing				

Product Information

	CDM	SEM 1	SEM 2	SEM 3	SAM
Dimensions (mm)	726 (w) 662.7 (h) 267 (d)	627.5 (w) 659 (h) 267 (d)	407.5 (w) 439 (h) 235 (d)	609 (w) 645 (h) 228 (d)	706 (w) 651 (h) 275 (d)

Alex Clarke

Commercial Technical Sales Executive
alex.clarke@analogroup.com
+44 (0) 7944 050 637

David Booth

Technical Consultant
david.booth@analogroup.com
+44 (0) 1642 051 199

Klaus-Martin Rupp

Strategic Sales Director
klaus-martin.rupp@analogroup.com
+44 (0) 7398 740 454

Analogroup.com

Analox Group

15 Ellerbeck Court
Stokesley Business Park
Stokesley
Middlesbrough
TS9 5PT

info@analogroup.com
+44 (0) 1642 711 400

ANALOX

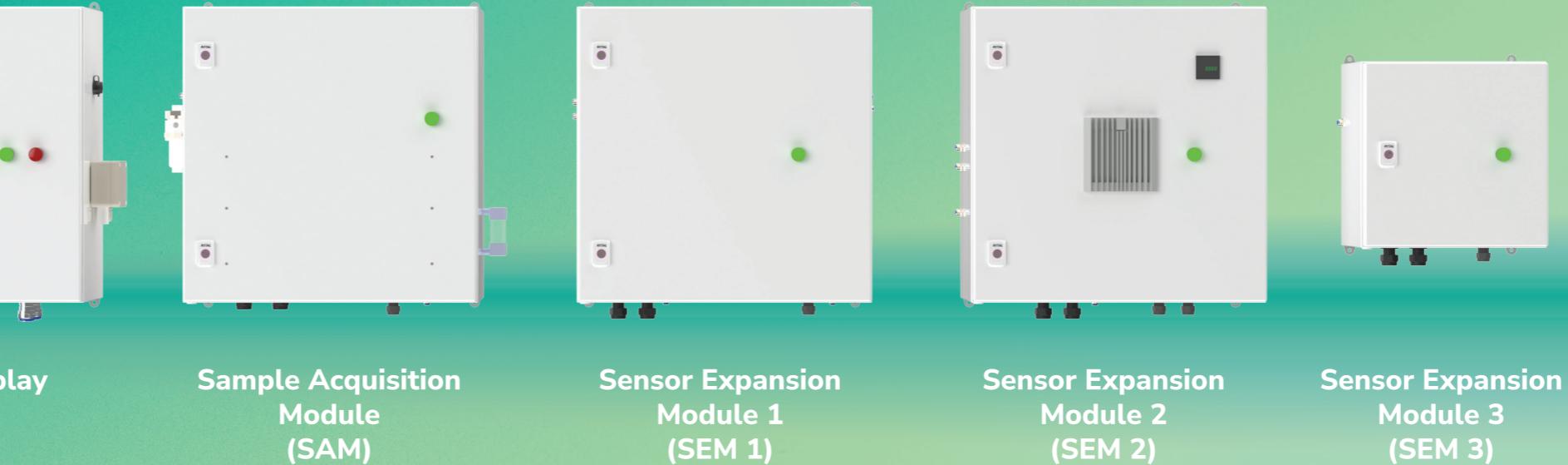
Achieving Precision, Striving for Perfection

Our journey in developing a precise, robust and reliable
gas sensing solution for **monitoring the reduction of
methane emissions**.

About us

Analox Group is a trusted provider of **gas sensing systems** across a range of industries such as commercial diving, food and beverage, defence and much more. Our team of highly skilled professionals are dedicated to **solving challenges with innovation, precision and reliability, ensuring safety in every environment**.

Here's our story...


Joining the Consortium

Analox joined the Dancing with Daffodils project through a recommendation from Professor Jamie Newbold, a leading researcher at Scotland's Rural College, to our Group Technical Sales Manager, David Booth. David's extensive network and expertise in gas analysis led to our collaboration with Rumenco, the consortium's lead organisation, to develop on-farm gas monitoring systems.

Defining Customer Needs & Building the Project Team

Our early discussions with the customer were critical to establish a clear and shared vision from the outset - understanding their needs, constraints and performance expectations, ensuring alignment between all stakeholders. Establishing a project team was based on required technical competencies and project scope, as well as the involvement of graduate engineers to foster learning and fresh perspectives.

Our System

Central Display Module (CDM)

Sample Acquisition Module (SAM)

Sensor Expansion Module 1 (SEM 1)

Sensor Expansion Module 2 (SEM 2)
Sensor Expansion Module 3 (SEM 3)

Design, Feasibility and the Build of Prototype One

The system needs to measure CO₂, O₂, CH₄, NH₃ and H₂ from a cow's eructation while feeding, using a pump to draw samples to the sensors via a feeding hood. There have been many site surveys executed as well as collaborating with Newcastle University and Scotland Rural College for on-farm trials. During the build of prototype one, there was a redesign from plastic to metal enclosures to be more resistant for radiated immunity testing.

Scan this QR code to view an **interactive timeline** of the project!

Internal Safety Testing

In-house safety testing is conducted, including a visual inspection, cable tug test, insulation test, and a continuity test. This includes gas calibration through the sample lines to verify sensor accuracy.

Field Ready: Prototype Testing

On-farm testing will validate the performance, durability and compliance of the prototype under real-world conditions. The main priorities will be focusing on operational effectiveness, reliability, durability and user feedback integration. This phase is essential in developing deployment and ensuring the system meets all technical and operational expectations.

In Action: Conducting On-Farm Trials

The on-farm trials for the Daffodil project will provide real-world validation of the system's performance under operational conditions. Key focuses will include monitoring yield efficiency and environmental impact, as well as gathering data to ensure the system meets industry standards and regulatory requirements. The trial feedback will provide the information required to optimise the system's performance, durability and reliability before full-scale deployment.