# Adding microbial data to enhance breeding for lower methane emissions

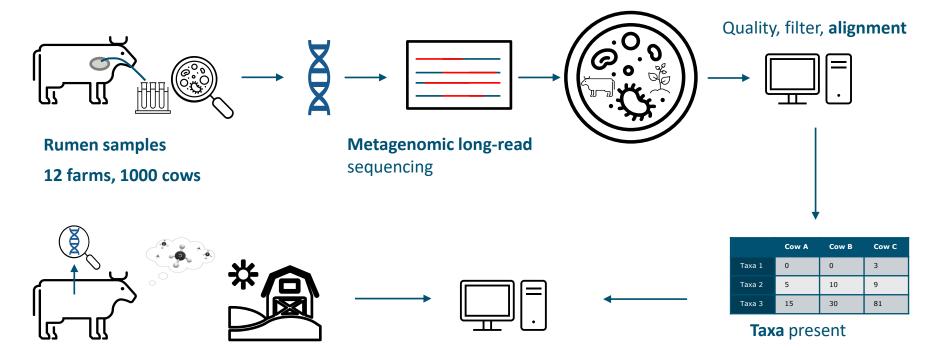
Hanne Honerlagen, Renzo Bonifazi, David Flossdorf, Aniek Bouwman











#### Microbial- enhanced selection to lower methane?



- 1. Can rumen microbial information help to predict methane phenotypes?
- 2. Which rumen microbial taxa are potentially targeted by breeding for lower methane?



#### Data collection



cow **genotype**, **methane** emission and additional data

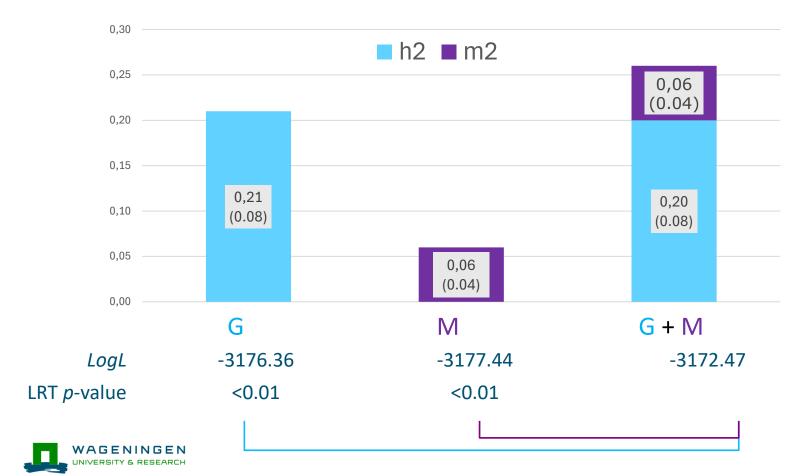
data in **models** 



#### What has been done

- 1. Can rumen microbial information help to predict methane phenotypes?
  - □ Prediction of methane phenotypes by 3 models using:

- 1. Host genetic data (G)
- 2. Microbial data (M)
- 3. Host genetic + Microbial data (G+M)




| Model | Equation                                |
|-------|-----------------------------------------|
| G     | $\overline{CH_4} \sim Xb + Zu + e$      |
| M     | $\overline{CH_4} \sim Xb + Wm + e$      |
| G+M   | $\overline{CH_4} \sim Xb + Zu + Wm + e$ |

 $\overline{CH_4}$  based on CH4 ppm averages per cow/day  $\pm 50$  days from rumen fluid sampling date Xb fixed effects of herd, lact. stage (4 classes), parity (1 to 4+), CO2 (as covariate) Zu modeled using a genomic relationship matrix based on 52K SNPs Wm modeled using a microbial relationship matrix based on 577 genera (Ross *et al.*, 2013)



### Results - CH4 variance explained



#### **Prediction accuracies**

|     | cor(EBV, Y*) | cor(EMV, Y*) | cor(EBV+EMV, Y*) |
|-----|--------------|--------------|------------------|
| G   | 0.04 (0.04)  | -            | -                |
| M   | _            | 0.17 (0.03)  | _                |
| G+M | 0.04 (0.04)  | 0.17 (0.03)  | 0.15 (0.04)      |

(SE in brackets)

### Dispersion

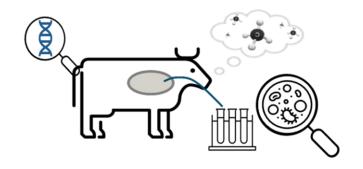
| G+M | 0.29 (0.28) | 1.78 (0.37) | 0.77 (0.23) |
|-----|-------------|-------------|-------------|
|     |             |             | ( - )       |



## Take-home messages research question 1:

- 1. Can rumen microbial information help to predict methane phenotypes?
  - $\overline{CH_4}$ :  $h^2 = 0.21$ ,  $m^2 = 0.06 \rightarrow m^2$  low
  - Prediction accuracies:
    - Low using only G (~0.04) (small dataset)
    - Good using only M (~0.17)
    - Improve moving from G to G+M (→ 0.15 & less dispersion)

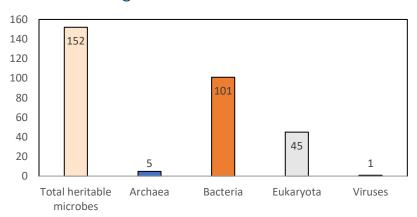



### What has been done: Roadmap

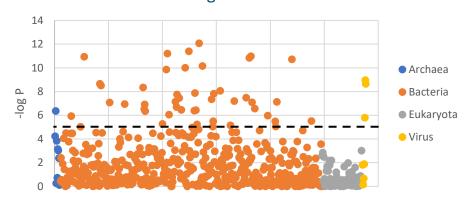
- 2. Which rumen microbial taxa are potentially targeted by breeding for lower methane?
  - ☐ Heritabilities of rumen microbial genera

microbe = Xb + Zu + e microbe = rel. abundance of genus in the animal Xb herd, lactst, parity, CO2 Zu based on 52K SNPs

Associations of microbial genera to methane


$$\overline{CH_4} = Xb + Zu + e$$
  
 $\overline{CH_4} = \text{CH4}$  ppm averages per cow/day ±50 days from sampling date  $Xb$  herd, lactst, parity, CO2, **microbe** (as covariate)  
 $Zu$  based on 52K SNPs






### Heritability and association with methane

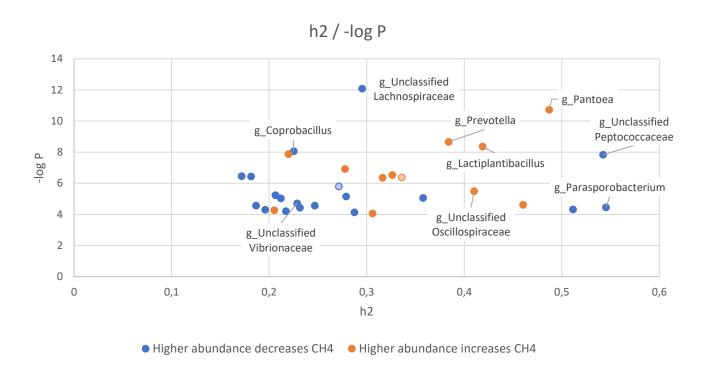
#### Heritable genera found in core microbiome



#### Association of genera with methane



148 / 577 genera heritable\*


\* h<sup>2</sup> = significantly different from zero

80 / 577 genera associated\* with methane

\*significance threshold -log10(p)>4



#### Heritable genera & associated with methane





### Take-home messages research question 2:

- 2. Which rumen microbial taxa are potentially targeted by breeding for lower methane?
  - Heritabilities: 148 genera heritable, h² up to 0.57
  - Association: 80 genera associated with methane

In total, <u>30 microbial genera</u> potentially targeted by breeding for lower methane.



### Thank you for your attention!

This work is part of the Re-Livestock EU Horizon project and the Knowledge and Innovation Agenda of the Dutch Ministry of Agriculture, Nature, and Food Quality









Contact: Hanne Honerlagen hanne.honerlagen@wur.nl

Tel/SMS/Whatsapp: +31 6 81172123









#### **Validation**

- Leave-one-farm-out (limited dataset)
- **EBVs** and MBVs compared with  $Y^*$  from most complete model (G+M)
- $Y^* = EBV + MBV + e$

- Prediction accuracy:  $cor(Y^*, x)/sqrt(h^2 + m^2)$
- Dispersion: regression slope
- SE via bootstrapping



### Next steps / current work

Calculate genetic covariances between these 30 genera and CH4

 Use parameters in selection index to estimate their potential additional genetic gain



### Microbial relationship matrix

Relative abundance table → Microbial Relationship Matrix (M) Following Ross et al. 2013:

Log-transformation on relative abundance profiles

$$\mathbf{X}_{\text{anim, taxon}} = log(\mathbf{X}_{\text{anim, taxon}} + 0.01)$$

with:

**X** <sub>anim, taxon</sub> = standardized count matrix

m = number of microbial taxa (577 genera)



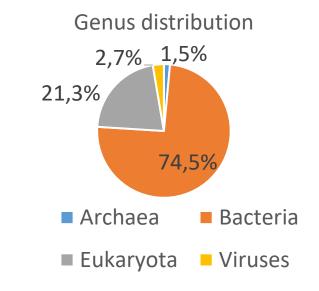
### Data: Methane and genotypes

- methane concentration:  $\overline{CH_4}$  in ppm per cow/day
- recorded (sniffers) ±50 days from sampling date



- all animals were genotyped at 52K SNPs (after QC)
- methane + genotypes + microbiome: 642 cows in 10 farms

|                               | Min  | 1st Q. | Mean  | 3rd Q. | Max   |
|-------------------------------|------|--------|-------|--------|-------|
| cows/farm                     | 32   | 54.3   | 64.2  | 81.8   | 92    |
| $\overline{CH_4}$ ppm/cow/day | 87.3 | 310.5  | 436.2 | 539.5  | 863.8 |



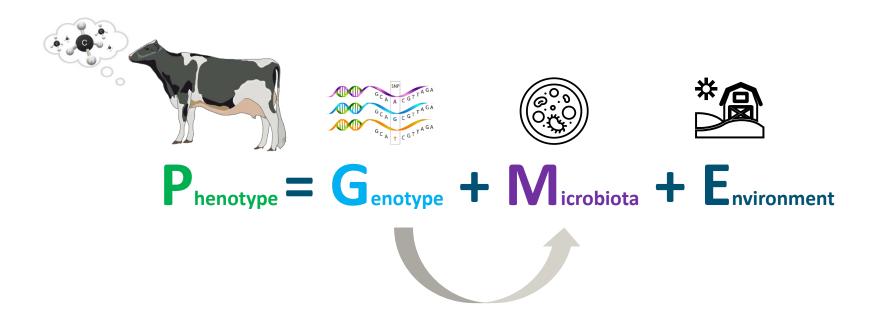



#### Data: Microbiome

- 970 rumen samples from 12 farms in the Netherlands
- Long Read Sequencing → squeezemeta
- Reads count table of Taxonomical Units (OTU):
  - Discarded: unidentified at family level
  - Discarded: Eucaryotic except Fungi and Protozoa
  - Included: Viruses
- Standardization: relative abundances (% of total OTU reads/animal)





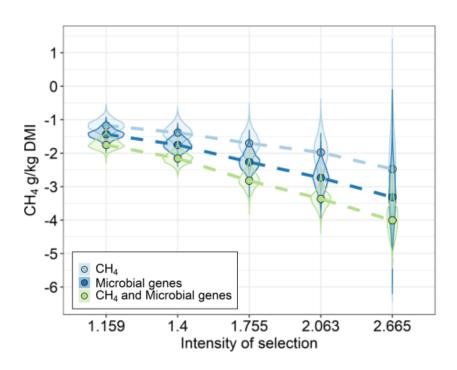

More details: Flossdorf D. @10.00

# Thank you.





#### Microbiome in cattle

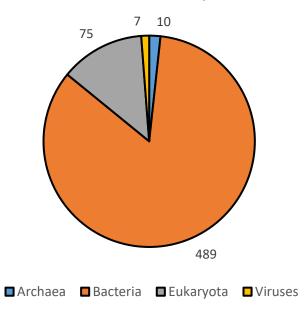


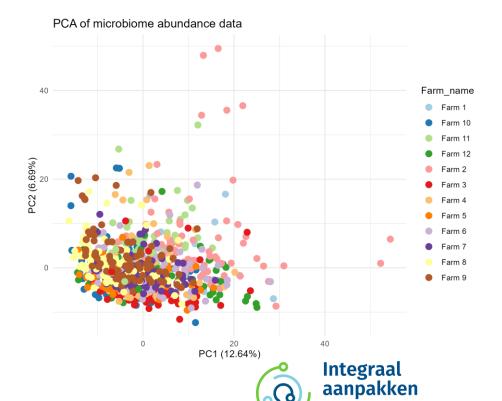



#### Additional methane reduction

 Selection on combination of methane and microbiome

 Additional reduction in methane of ~4% extra per generation






#### Microbiome data









Samen werken aan duurzame &

klimaatverantwoorde veehouderii