Global Methane Genetics initiative Dairy Working Group

Organisation: Birgit Gredler, Rasmus Bak Stephansen, Raffaella Finocchiaro

October 27, 2025

Welcome!

Aim

- Update what's happening in Global Methane Genetics
- Network building
- Share: knowledge & hurdles
- Discussion: gaps & needs

Agenda

- Update from GMG (Roel)
 - data sharing & data base development
- Update from the GMG dairy projects (Brown Swiss, Red dairy breeds, Jersey, Holstein IT-PL, Holstein DK-NL) – (project leaders)
- Update ICAR Feed&Gas wikipage (Chantal)
- Update sniffer SOP/testing center for methane recording devices (Chantal)
- Update Projects outside GMG (all)
- Open discussion about research gaps (all)
- AOB

Global Methane Genetics initiative

Investment of 27M US\$ 25 countries, 50 partners, 25 breeds Methane pheno- & genotypes ~110k cattle & sheep, ~20k microbiome

Dairy:

Holstein (~42k) Jersey (~8k) (Nordic) Red Breeds $(\sim 7.3k)$ Brown Swiss (~3.3k)

Develop protocols Phenotyping World-wide sharing Genetic evaluation

Beef:

North America (~6k) Australia, Ireland, UK, NZ (~18.5k)

Sheep: world-wide reference population

Australia & New Zealand UK & Ireland Uruguay (~17k)

Africa

Local breeds & crosses (~4k)

Latin America

Beef (\sim 7k)

Microbiome:

World-wide reference population $(\sim 20k \text{ samples})$

Update GMG

- Startup meeting Innsbruck
- Second newsletter 1).

- Contracts
- Proposal development: small holder farms, Asia & buffalos
- Framework of adoption & incentivization system for genetic selection as methane mitigation tool

GMG data sharing & data base

- Two data sharing agreements: 1) GMG paid data and 2) exchange for record contribution. Will be sent for signature to partners
- Database
 - Business requirement and review existing database
 - June three offers to build August contracted, weekly meetings, tomorrow consultation meeting
 - →planned delivery February

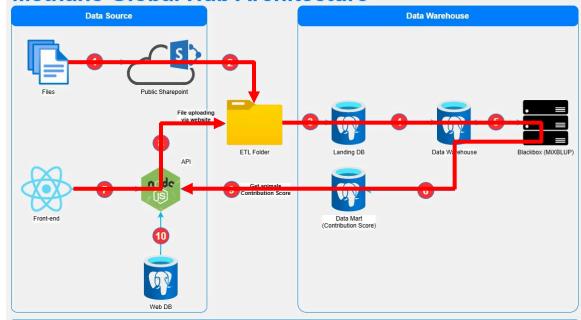
Architecture & Data Flow

User upload Via SharePoint: 1 → 2

User upload Via Web: 7 → 8

Data processing: $3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 9$

- ✓ Storing a copy of imported files
- ✓ Validate & cleanse data


- ✓ Centralized methane data store
- ✓ Keeping historical version of data records
- ✓ MiXBLUP integration
- ✓ Contribution score

✓ Dedicated database for data extraction WAGENINGEN

UNIVERSITY & RESEARCH

Methane Global Hub Architecture

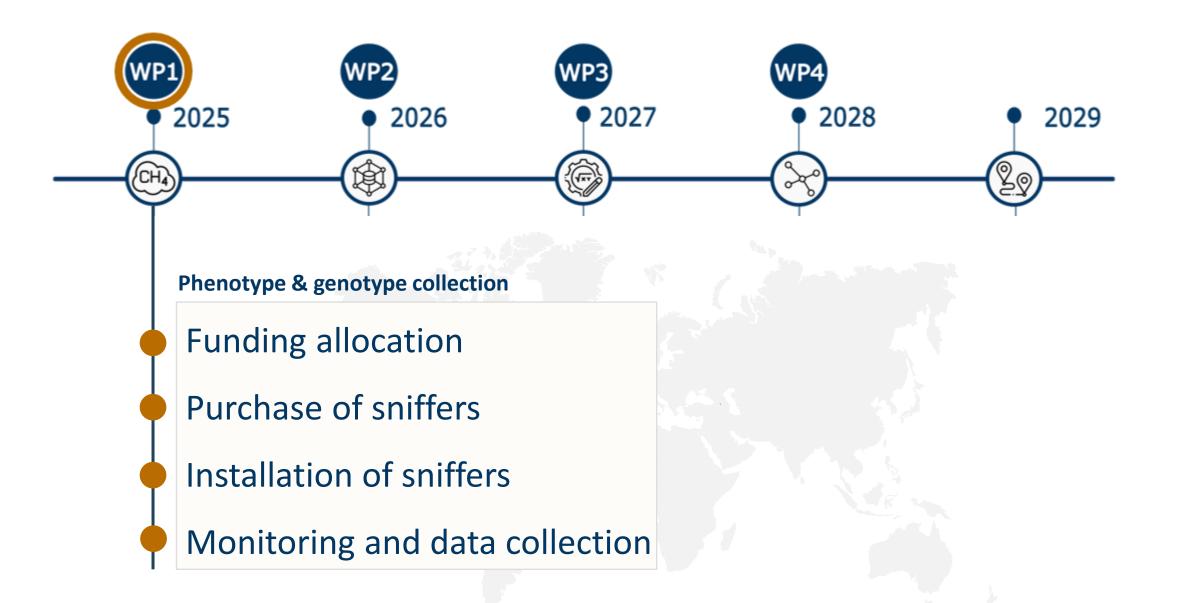
Update GMG Dairy projects

- EMBRACE-BS (Robin Joest)
- Red breeds (Elisenda Rius-Vilarrasa)
- Jersey (Rasmus Bak Stephansen)
- Holstein IT-PL (Raffaella Finocchiaro)
- Holstein DK-NL (Coralia Manzanilla-Pech)

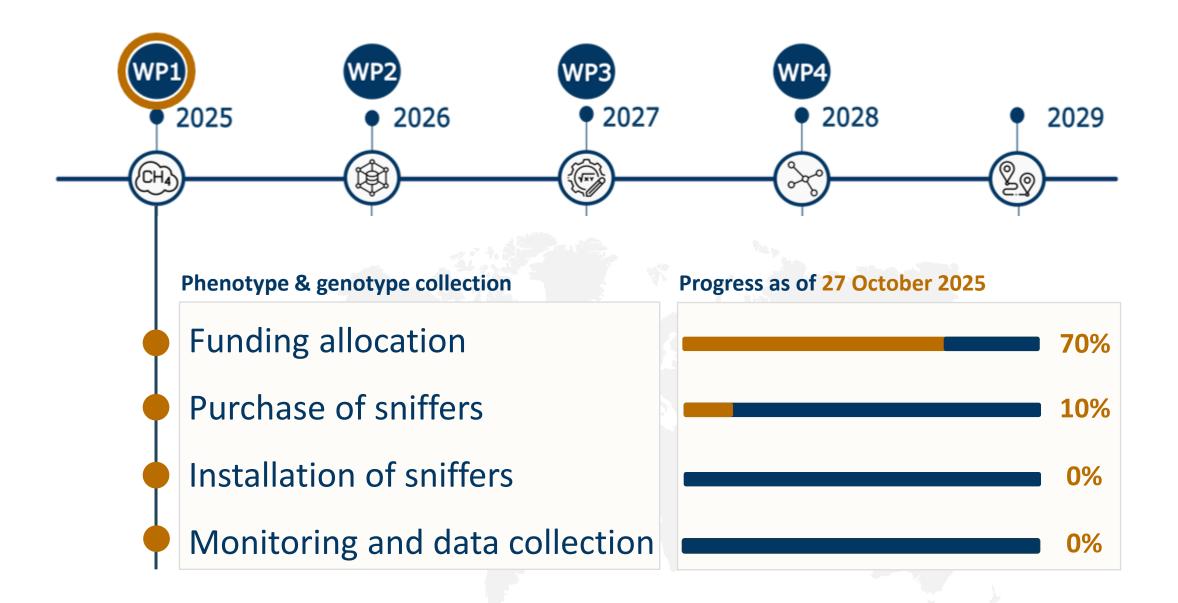
Status Update on: **EMBRACE-BS**, part of:

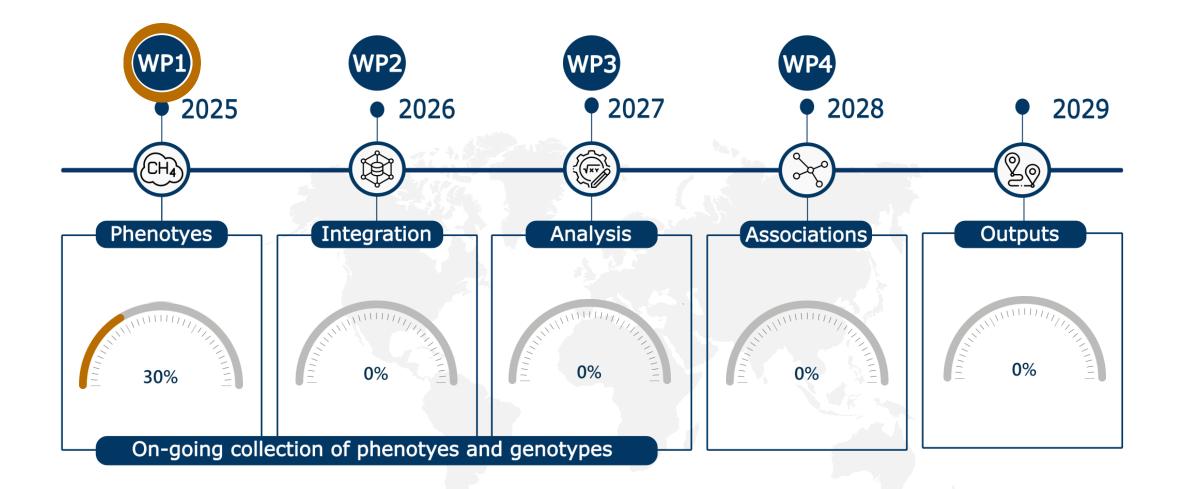
- Negotiations with third parties regarding microbiome samples
- Start of phenotyping: Delivery of the sniffers is delayed (Tecnosense)
- Farm acquisition and promotion of the project

Mitigating Methane Emissions in Red Dairy Cattle through Genetic Selection



Elisenda Rius-Vilarrasa, Sofia Nyman, **Tomas** Klingström (SWE), **Bjørg** Heringstad & **Karoline** Bakke (NOR), **Trine** Michelle Villumsen & **Rasmus** Stephansen (DNK),


Enyew Negussie (FIN),
Filippo Miglior, Christine Baes & Debora Santschi (CAN),
Mike Coffey & Raphael Mrode (UK)



Global Methane Genetics - Jersey

"Accelerating methane mitigation for Jersey dairy cattle world-wide, through high throughput phenotyping and breeding"

By ChatGPT

Update GMG Jersey

Waiting for donation, to start equipping herds with sniffers

Ordering 6 sniffers for Canada and 10+5 sniffers for Denmark

Prepare rumen sampling (application to authorities, talk with farmers on their opinion)

Prepare dissemination in 2026

ICAR/Interbull 2026

WCGALP 2026

Webinar and articles through World Jersey targeting breeders and stakeholders

We see interest from new countries to install hardware to measure CH₄

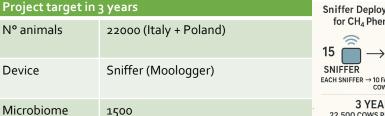
GMG:

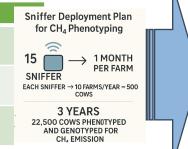
Accelerate data collection on GHG emissions in two European milk-producing countries

Raffaella Finocchiaro (ANAFIBJ) & Marcin Pszczola (PFHBiPM)
Project Leaders

Partners italiani

Francesco Tiezzi – University of Florence Giulio Visentin – University of Bologna Maddalena Zucali – University of Milan





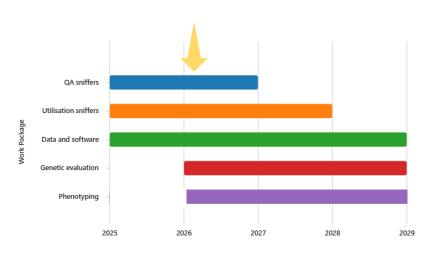
- 1. Italy ordered 5 sniffers—15/11/25
- 2. Poland order in progress 10 sniffer

Internal data-share agreement ready to be signed:
Polish Federation, University of Florence, University of Bologna, University of Milan

Pipeline development in progress: still some doubting on data saving
 Agreements AMS company running (TDM/DeLaval/Gea ---Lely in progress)

	Italy Farms recruiting	
	Farms	33
	Filter 1	Genotyping/AMS
•	Filter 2	Known by classifiers

Nowadays we are already working with 7 extra-MooLoggers with a total of **300** cows phenotyped and genotyped



your **COW** our **FUTURE**

International collaboration developing standards and quality control measures for phenotyping with a used in breeding programs, and accelerating the phenotyping

Trine Villumsen, Coralia Manzanilla-Pech, Yvette de Haas, Roel Veerkamp, Viktor Milkevych, Mogens Lund, Chantal van Gemert, Birgit Gredler-Grandl, Anouk van Breukelen, Rasmus Stephansen, Johan Snijders, Martin Bjerring.

Highlights

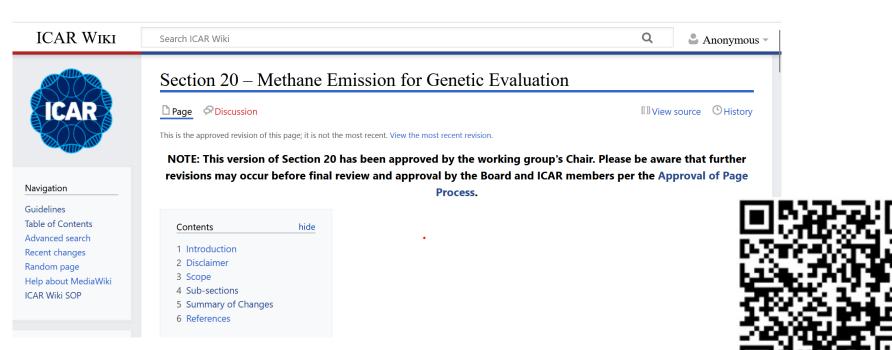
- Kick-off meeting 22 September with all parties
- WP1 (WUR)
 - SOP ready and available (11 sniffers)
 - 5 sniffers installed in 2 research farms
- WP2 (AU)
 - Working on a manual for installation of sniffers in AMS (plan to include WUR experience)
- WP3 (AU)
 - GEDA software to align and process CH4 data ready (to be tested in WUR data)
- WP4 and WP5 (WUR-AU)
 - Planning meetings with all parties to discuss strategies, workplan, etc.

ICAR Feed&Gas wikipage

- https://wiki.icar.org/index.php/Section 20 %E2%80%93 Methane Emission for Genetic Evaluation
- GreenFeed
- Wearables
- Microbiome protocols coming soon
- Activities: https://wiki.icar.org/index.php/Section 20: Activities
- Activities send us information about projects & events to be included here!

Global Methane Genetics initiative Testing centre for methane recording devices Standard Operating Procedures (SOP) - Sniffers

Yvette de Haas, Chantal van Gemert, Lisa Büttgen

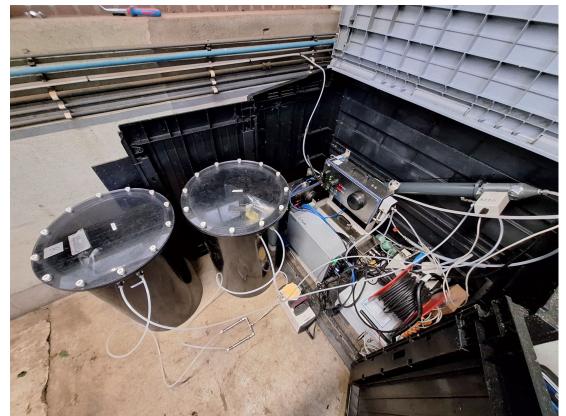

Develop protocols for methane recordings

- Establishing quality standards for sniffers and setting up test facility (lab and on farm) for different sniffer types that will serve as guidelines when starting to collect methane records
 - Compare specifications of commercially available sniffers
 - Calibrate and validate a few of these in our Air Quality Lab
 - Set up a test facility on farm with different sniffer types
 - Validate these sniffers against the lung method* and a GreenFeed
 - Set up protocol for methane recordings with a sniffer device

Specifications on ICAR Wiki

ICAR Wiki: https://wiki.icar.org/index.php/Guidelines

Set up lab facility



Set up on farm facility

Set up lung method (= Gold Standard)

ICAR test facility

ICAR Validated Sensor Systems

Beyond official milk recording, obtained with ICAR certified devices, results from devices also supports farm management by providing insights into production, animal health, welfare, and sustainability, often enhanced by mathematical models and algorithms. Given the diversity of applications, a single evaluation protocol is impractical; instead, ICAR offers claim validation for solutions outside official milk recording to ensure user trust while allowing flexibility in development.

ICAR validation ensures that a device (e.g. milk meters for cows <u>and</u> sheep/goats, automatic milking system (AMS) device, milk analysis device, on farm at/in line milk analyzer, sensor device) meets <u>manufacture performance</u> claims through ICAR-approved test plans conducted by a qualified ICAR Test Center.

Successful validation confirms that the system can reliably deliver quality data when used correctly, leading to the award of an ICAR Certificate of Validation.

- First for sniffers
- Later maybe also for other methane devices?
- ICAR Board meeting early November 2025

Apply now

Submit the application form to request a validation now.

Application form

The application form should be accompanied by the requested documentation:

- Clear description of all components of system – ID, components, software,
- · System technical manual
- · Farm operator manual
- Internal research and validation studies
- · Peer reviewed publications
- Software manual for use of the system devices
- · Installation procedure
- Routine test or periodic checking procedures for service technicians
- Technical characteristics, drawings and 2D/3D pictures of the device

Validation procedure

- 1. The applicant submits an application form
- The application is reviewed, and the Test Centre is designated.
- 3. The Test Centre prepares the test plan, detailing the timeline and associated costs.
- ICAR provides the applicant with an umbrella contract and invoice for test fees, along with the test plan.
- Testing begins upon signing of the contract by the applicant and full payment of the test fees
- Upon test completion, ICAR disseminates the report to the MRSD Sub-Committee for review. comments. and recommendations.
- ICAR forwards the report to the applicant and issues the official ICAR Certificate upon successful completion of the test.
- 8. The certified device/system is listed on the ICAR website.

Thank you for your attention!

Yvette.deHaas@wur.nl

+31-317-480505

What's happening in dairy – other projects/initiatives

Open discussion – research gaps

- Trait definition ratio trait? Which trait in the breeding goal?
 Challenge inclusion methane in breeding goals
- GxE feed additives
- Beef on dairy
- Genetic correlation between methane & feed intake/efficiency
- Measuring methane in young (heifer) animals
- Software QC, data editing

Thanks for your attention & contributions!

Global
Methane
Genetics
initiative

Led by
WAGENINGEN
UNIVERSITY & RESEARCH

WAGENINGEN
UNIVERSITY & RESEARCH

In Partnership with
BEZOS
EARTH
FUND

Global
EARTH
Hub

gmg@wur.nl

Newsletter:

https://www.wur.nl/en/project/global-methanegenetics-initiative.htm?wmstepid=thank you

