

Evaluate the precision of enteric methane and carbon dioxide emissions of sniffer method compared to respiration chamber method

Senevirathne Nirosh^{1*}, Dilmini Alahakoon¹, Daniela Carnovale², Ashley Sweeting², Joseph W. McFadden¹

Department of Animal Science, Cornell University, Ithaca, NY, ²Agscent Pvt Ltd, Carwoola, NSW, Australia.

INTRODUCTION

- The Sniffer (Agscent [AS]) method provides spot sample emissions for methane (CH₄) and carbon dioxide (CO₂) with high variability compared to respiration chambers (RC).
- The gold standard for precise CH₄ emission measurements involves housing animals in a RC, which allows for direct measurement of total gas emissions.
- The use of RC is expensive and labor intensive. Effective strategies to mitigate enteric CH₄ emissions depends on accurate, cost-effective methods to assess emissions from large number of animals.

OBJECTIVE

 Evaluate the precision and accuracy of a AS method for CH₄, CO₂ and ambient temperature (AT) in comparison to a RC method

- Three multiparous lactating Holstein cows (688 ± 28 kg; BW, 29 ± 4 kg milk/d) were used in a completely randomized design.
- Cows were offered a TMR (DM basis: 55% corn silage, 12% grass haylage, and 33% concentrate).
- Agscent sniffer was placed inside the RC for 5 d to measure CH₄ and CO₂ concentrations, along with AT, enabling simultaneous gas concentration measurements.

RESULTS

Table 1: Mean concentration, Pearson's correlation, and concordance coefficient of CH_4 and CO_2 measured by RC and AS

	RC	AS	SEM	P -Value
Mean: CH ₄ ppm	158	161	55	*
Mean: CO ₂ ppm	2444	2302	539	*
Pearson's correlation: CH ₄	0.72			*
CCC: CH ₄	0.71			*
Pearson's correlation: CO ₂	0.66			*
CCC: CO ₂	0.62			*

ccc; concordance correlation coefficient, * p- value at 0.05

SUMMARY & CONCLUSION

- The mixed-effects linear model, using AS measurements of CH₄, CO₂ and AT achieved 65% accuracy in predicting CH₄ concentrations compared to RC.
- Lin's concordance correlation coefficient showed strong agreement for CH₄ and CO₂.
- Our findings reveal strong correlations between RC and AS when gases are measured simultaneously, highlighting the need for further research to enhance gas measurement prediction models in open barn settings.

ACKNOWLEDGEMENT

We thank to LARTU staff for assisting with the animal care and recognize the financial support from Agscent Pvt Ltd.

