Accelerate genetic progress to reduce methane emission – **Africa working group**

Chairs: Yvette de Haas & Raphael Mrode, May 23, 2025

Aim working groups

- Introduce Global Methane Genetics & running projects
- Bring people together and build network
- Share knowledge, experience, hurdles & issues
- Collaborate on key topics
 - E.g. Smaller groups, task force
- 2 meetings a year

Agenda

- Welcome & Aim
- Global Methane Genetics initiative (Birgit)
- ICAR Feed&Gas guidelines & wiki (Birgit)
- GMG Africa project (Raphael)
- Any other project to mention in Africa?
- Discussion:
 - Gaps & Needs, ideas, opportunities
- AOB

Global Methane Genetics (GMG)

Accelerating Genetic Progress to reduce methane in ruminants

Coordinators: Roel Veerkamp & Birgit Gredler-Grandl (WUR)

GMG: Why? How? What?

- Genetic progress can make a permanent and impressive contribution to reducing methane output from livestock systems globally
- We aim to accelerate genetic progress and to implement breeding strategies for reduced methane emissions in ruminants in the global North and South by supporting
 - sharing of protocols and data,
 - expanding phenotyping, breeding program design
 - genetic evaluations
 - development of Global Livestock Genetics and Genomics Programs

Global Methane Genetics initiative (GMG)

Accelerate genetic progress for low CH₄ emitting ruminants

Investment of 27M US\$ 25 countries, 50 partners, 25 breeds Methane pheno- & genotypes ~110k cattle & sheep, ~20k microbiome

Dairy:

Holstein (~42k)
Jersey (~8k)
(Nordic) Red Breeds
(~7.3k)
Brown Swiss (~3.3k)

Beef:

North America (~6k) Australia, Ireland, UK, NZ (~18.5k)

World-wide sharing
Develop protocols
Phenotyping for
reference populations
Genetic evaluation
Impact of genetics

Sheep: world-wide reference population

Australia & New Zealand UK & Ireland Uruguay (~17k)

Africa

Dairy & crossbreeds (~1.5k)

South America

Beef & indigenous (~7k)

Microbiome:

World-wide reference population (~20k samples)

Global Methane Genetics (GMG) initiative

UNIVERSITÀ DEGLI STUDI DI MILANO

E AMBIENTALI - PRODUZIONE. TERRITORIO, AGROENERGIA

THE UNIVERSITY of EDINBURGH

Key areas – current activities

- Projects get started
- Share data data base for external and GMG internal data sharing
- Fair share principle
- SOP for recording & harmonisation of data pipelines across partners
- Build facility to test methane recordings of many individual cows

ICAR Feed&Gas working group ICAR Sheep, Goats & Camelids ICAR Wiki-page

Birgit Gredler-Grandl & Chantal van Gemert

Wageningen University & Research

Group Objectives

- Update, promote and extend guidelines for phenotype recording – methane and feed intake in ruminants
- Guidelines for full range of traits in sheep and goats
- Harmonisation & standardisation
- Conduct surveys, reports for recording schemes
- Provide a forum and foster knowledge exchange
- Facilitate and coordinate international collaboration

https://https://www.icar.or g/group/working-groupsheep-goats-andcamelids/

https://www.icar.org/group/working-group-feed-and-gas/

- ICAR Wiki: https://wiki.icar.org/index.php/Guidelines
- Section 20: Methane emissions for genetic evaluations

- ICAR Wiki: https://wiki.icar.org/index.php/Guidelines
- Section 20: Methane emissions for genetic evaluations

4 Sub-sections

Proxies Definition and Terminology Proxies discussion Methane determining factors Merging and sharing data in genetic evaluations Methane measurements methods Ongoing activities **Sniffer SOP** GreenFeed SOP **Projects** PAC **Initiatives LMD** Course material

- GMG projects/partners valuable source of existing & newly developed information
 - Recording devices
 - Protocols & SOPs harmonisation of recording & data pipelines across countries
 - Do's and dont's
 - Differences between species/breeds
 - Anything that might be useful for others working with methane emissions
- Expect GMG partners & others contribute material/information

- Feedback is welcome! Start a discussion!
 - If you have information you would like to add to a specific page
 - If you notice information that is wrong, no longer up to date or incomplete
- Click on the discussion button at the top of the page
 Section 20 Methane Emission for Genetic Evaluation

- Fill in a subject and description and add the topic
- The writers of the pages and everyone else can comment on these topics
- Would like to add information, feel free to open a discussion on the main page

Global Methane Genetics Initiative: Accelerating reduced emission's investock indigenous breeds in Africa

R. Mrode -- East Africa Team : ILRI, Nairobi, Kenya

West Africa Team: Habibou ASSOUMA (CIRAD) and Luc Hippolyte Dossa (UAC)

South Africa Team: Giel Scholtz (ARC)

Dimensions of the project

- Project implemented in three regions of Africa
- West Africa:
 - Mohamed Habibou ASSOUMA (CIRAD) and Luc Hippolyte Dossa (UAC)
 - CIRAD, CIDES, Université d'Abomey-calavi (UAC)
 - Burkaso Faso and Benin
- South Africa:
 - Giel Scholtz
 - Agricultural Research Council, South Africa (ARC),
- East Africa: Kenya and Ethiopia
 - ILRI Raphael Mrode

Four Work packages

1: Phenotyping for CH₄, production traits and genotyping of animals

2: Microbiome profiling, fecal sampling and sequencing of microbiome.

3: Design genetic models for joint data analysis dairy cattle data from different regions of Africa; analysis of microbiome sequence data and mapping to CH4 and productive traits.

4: Working with government national breeding centers and private breeding organizations to feed outcomes into existing breeding programs for improved productivity and efficiency

WP1: Phenotyping

West Africa

- Two experimental stations
- UAC (Benin): 20 cows measured from 4 breeds Girolando (exotic), White Fulani, Goudali, Borgou (LMD and Greenfeed)
- CIRDES (Burkina Faso): 20 cows Sudanese Zebu Peul and Azawak (LMD and GreenFeed)
- Benin 75 cows in government farm LMD

South Africa

 20 bull calves each, from the Afrikaner, Bonsmara and Nguni beef breeds over 3 years (LMD and GreenFeed)

WP1: Phenotyping

East Africa

- Kenya and Ethiopia
- 1800 cows measured in smallholder farms in each country over 3 years (LMD)
- 180 cows in medium /large farms in each country (LMD and Greenfeed)

WP2: Microbiome profiling, fecal sampling and sequencing of microbiome

 Microbiome sampling will be collected on 1000 tropical cows using the oral stomach tubing method

• West Africa: 40

South Africa: 180

East Africa: 680

Fecal samples also available for the East Africa samples

Update on Status

- Order placed with C-Lock for 2 Greenfeed units with Grid systems
- Order placed for 6 units of LMD units
- CRA with ARC, South Africa is being processed
- CRA with West Africa initiated
- Two farms for first location of Greenfeed units identified
- Work plans are being drafted- Ethiopia and Kenya
- Ethical approval (IREC and IACUC) at ILRI commencing
- Registered for overall launch of project in Innsbruck

Some concerns

- Microbiome sampling will smallholder farms could be a challenge
 - May need some incentive
 - Permission from Veterinary Department
- Limited experience with utilizing GreenFeed

The International Livestock Research Institute (ILRI) is a non-profit institution helping people in low- and middle-income countries to improve their lives, livelihoods and lands through the animals that remain the backbone of small-scale agriculture and enterprise across the developing world. ILRI belongs to CGIAR, a global research-for-development partnership working for a food-secure future. ILRI's funders, through the <u>CGIAR Trust Fund</u>, and its many partners make ILRI's work possible and its mission a reality. Australian animal scientist and Nobel Laureate Peter Doherty serves as ILRI's patron. You are free to use and share this material under the Creative Commons Attribution 4.0 International Licence © ①.

better lives through livestock

ilri.org