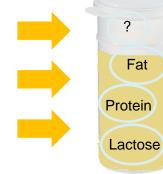
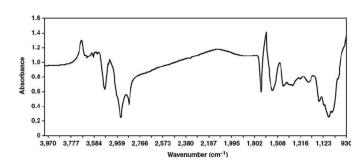
Overview of the methane equations developed from mid-infrared spectroscopy and their applications

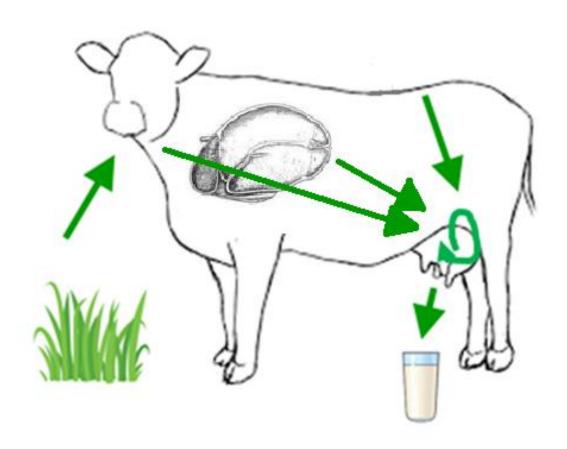
Maria Frizzarin

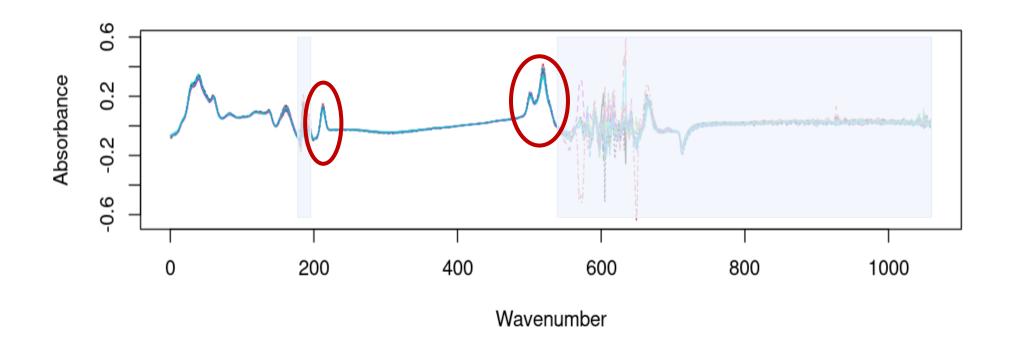
What is MIRS?

Fat








O

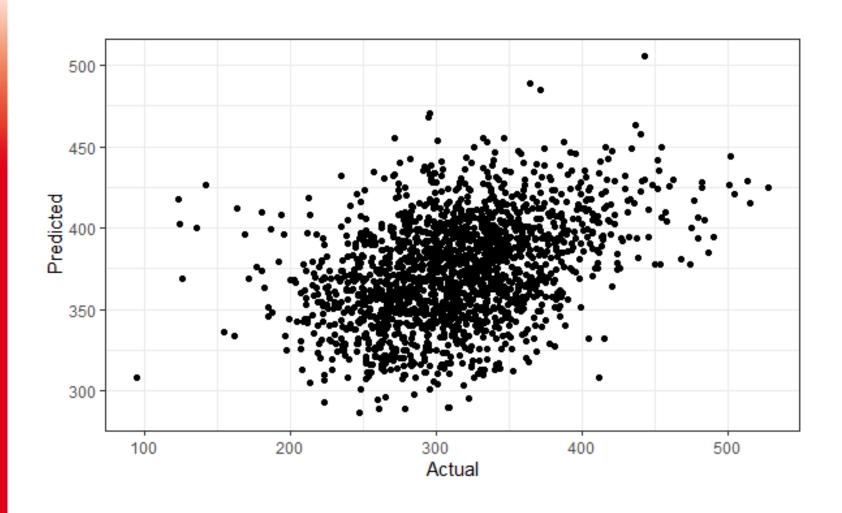
Why can MIR predict methane emissions?

O

Why can MIR predict methane emissions?

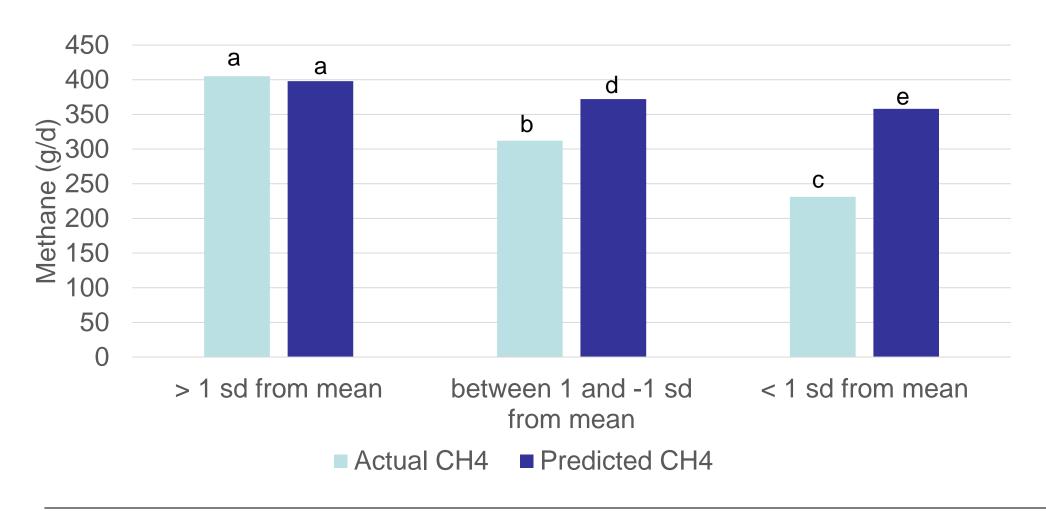
Developed equations

Country	Number of records	Number of cows	Breed	Methane measurements
EMR (Belgium, Ireland, UK, Germany, Switzerland, France, Denmark, Northern Ireland)1	1089	299	HF, Jersey, Brown Swiss, Red Holstein, Swedish red cross, Norwegian Red, HF cross	SF6 and respiration chambers
Canada + Denmark ₂	398	202	HF	GreenFeed
Ireland₃	3047 (*6500)		HF, Jersey, cross	GreenFeed
France ₄	515	129	HF	GreenFeed


Developed equations

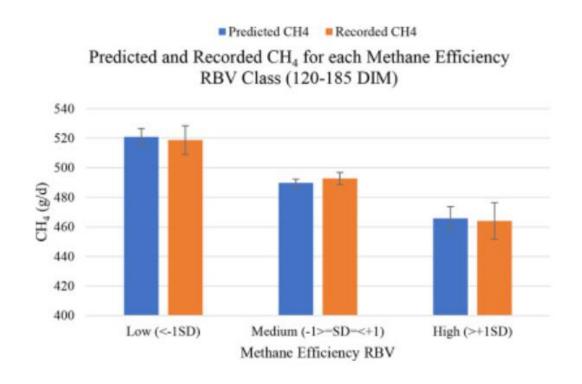
Country	Validation	Prediction variables	Prediction model	Accuracy
EMR (Belgium, Ireland, UK, Germany, Switzerland, France, Denmark, Northern Ireland)	5-group cross- validation	MIR transformed based on DIM + MY + parity + breed	PLSR	R2 = 0.60 RMSE = 65 g/d
Canada ₂	Random cross- validation	MIR + age at calving + DIM + country + season of calving + parity	NN	R2 = 0.49 RMSE = 71.61 g/d
Ireland ₃	4-group cross- validation	MIR + MY	NN	R2 = 0.50 RMSE = 37.46 g/d
France ₄	Random cow allocation in calibration and validation (67/33)	MIR + parity	PLSR	R2 = 0.73 RMSE = 48.4 g/d

Developed equations


Country	Number of records	Number of cows	Methane measurement	Validation	Accuracy
₅Netherland	218		Respiration chambers	Cross- validation	R2 = 0.30
₆ Sweden	593	37	Sniffer	Leave-one- cow-out cross- validation	R2 = 0.05

Irish equation— new validation

- R2 of 0.14
- Root mean square error of 78.76 g/d


Irish equation – new validation

U How are these equations used?

Country	Use	Equation used
Canada	Methane EBVs and genomic prediction	Canadian
Belgium	Methane EBVs and genomic prediction	EMR
France	Methane EBVs	EMR

Canadian Breeding values - validation

⁷Mid-infrared predicted CH₄ and recorded CH₄ (g/d) for low, medium, and high classes (120–185 DIM) of methane efficiency relative breeding values (RBV; n = 471)

7 Future projects

Country	Project	Project aim
France	Methane2030	National wide application of methane predicted values and methane EBVs
Austria		Development of MIR equations for Flieckvie cows
Netherland		Development of MIR equations
Norway		Development of MIR equations for Norwegian red cows
Switzerland	EffNMilk	Development of equations for Holstein cows combining milk MIR and feces NIR

Conclusions

- MIR equations for methane already developed in different countries with different levels of accuracies
- Predicted MIR-methane already used for EBVs quantification and development of genomic predictions
- New projects on developing MIR prediction equations for methane currently starting

References

1Vanlierde, A., Dehareng, F., Gengler, N., Froidmont, E., McParland, S., Kreuzer, M., ... & Soyeurt, H. (2021). Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra. *Journal of the Science of Food and Agriculture*, 101(8), 3394-3403.

2Shadpour, S., Chud, T. C., Hailemariam, D., Plastow, G., Oliveira, H. R., Stothard, P., ... & Schenkel, F. S. (2022). Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Journal of Dairy Science, 105(10), 8272-8285.

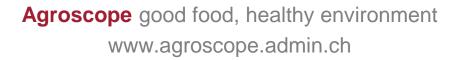
3McParland, S., Frizzarin, M., Lahart, B., Kennedy, M., Shalloo, L., Egan, M., ... & Berry, D. P. (2024). Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples. Journal of Dairy Science, 107(2), 978-991.

4Coppa, M., Vanlierde, A., Bouchon, M., Jurquet, J., Musati, M., Dehareng, F., & Martin, C. (2022). Methodological guidelines: Cow milk mid-infrared spectra to predict reference enteric methane data collected by an automated head-chamber system. Journal of Dairy Science, 105(11), 9271-9285.

svan Gastelen, S., & Dijkstra, J. (2016). Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. Journal of the Science of Food and Agriculture, 96(12), 3963-3968.

6Salleh, S. M., Kronqvist, C., Detmann, E., Karlsson, J., & Danielsson, R. (2023). Is it possible to predict the methane emission intensity of Swedish dairy cows from milk spectra?. Smart agricultural technology, 5, 100286.

7de Oliveira, H. R., Sweett, H., Narayana, S., Fleming, A., Shadpour, S., Malchiodi, F., ... & Miglior, F. (2024). Development of genomic evaluation for methane efficiency in Canadian Holsteins. JDS communications, 5(6), 756-760.



First name Last name

firstname.lastname@agroscope.admin.ch

