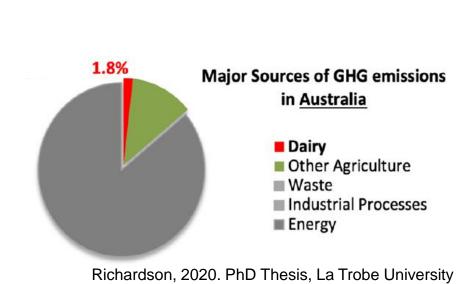
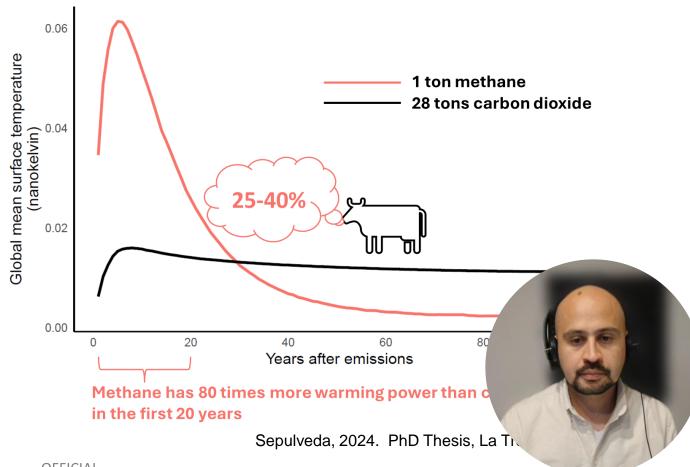
Association between rumen and faecal microbiome and enteric methane emissions in dairy cattle

Boris Sepulveda, Christy Vander Jagt, Amanda Chamberlain, Jianghui Wang, Leah Marett, Richard Williams, Joe Jacobs and Jennie Pryce

October 2025


AGRICULTURE VICTORIA



Cows: NOT the main polluter, but a key solution



Rumen microbes and methane

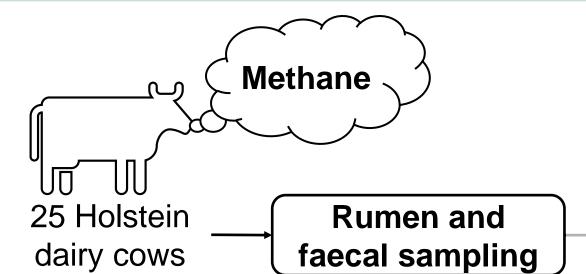
Recording methane is costly and impractical

Ruminal microbes indicate methane emissions

Rumen metagenome profiles are heritable and rank the New Zealand national sheep flock for enteric methane emissions

Timothy P. Bilton 1 0, Setegn W. Alemu , Ken G. Dodds , Hannah Henry , Melanie K. Hess , Ronan Jordan , Fern Booker¹, Sharon M. Hickey², Neville Amyes², Kevin Knowler¹, Edgar Sandoval³, Jacqueline Peers-Adams¹, Tracey C. van Stijn¹, Hayley Baird¹, Trevor Watson², Wendy Bain¹, Barry Veenvliet¹, Gerard Pile¹, Brooke Bryson⁴, Shannon M. Clarke¹, Patricia L. Johnson¹, John C. McEwan¹ and Suzanne J. Rowe¹

Structural equation models to disentangle the biological relationship between microbiota and complex traits: Methane production in dairy cattle as a case of study



Rumen and faecal microbes and methane

- Rumen sampling is invasive
- Faecal samples are easer to
- Could faecal microbes indicat
- Could faecal microbes indication
 intake, etc

Phenotypic correlation between PC and methane adjusted by:

- Experiment (2 levels)
- Feed intake
- Days in milk
- Parity
- Production
- Body weight

Laboratory processing

Extract DNA
Long-read sequencing with
Oxford Nanopore Technologies

Bioinformatics

Assign taxa and functions to the sequenced DNA using SqueezeMeta*

* doi.org/10.3389/fmicb.2018.03349

Data processing

- Remove non-microbial abundana
- Features in at least 90% of an
- Impute zeros
- Abundance to proportions

Correlations between PC and methane

Faeces - methane: up to 0.35 ± 0.18

Faeces - rumen

- Type of microbes: -0.37 ± 0.17 to -0.52 ± 0.16
- Genes of microbes: -0.34 ± 0.17 to -0.62 ± 0.12
- |0.62| faeces PC1 of rumen microbial genes.
 - 46% of variation in rumen

For details:

Proc. Assoc. Advmt. Anim. Breed. Genet. 26: 221-224

ASSOCIATION BETWEEN RUMEN AND FAECAL MICROBIOME AND ENTERIC METHANE EMISSIONS IN DAIRY CATTLE

B.J. Sepulveda¹, C.J. Vander Jagt¹, A.J. Chamberlain^{1,3}, J. Wang¹, L.C. Marett², S.R.O. Williams², J.L. Jacobs^{2,3} and J.E. Pryce^{1,3}

Agriculture Victoria Research, Bundoora, VIC, 3083Australia
 Agriculture Victoria Research, Ellinbank, VIC, 3821 Australia
 La Trobe University, Bundoora VIC, 3083 Australia

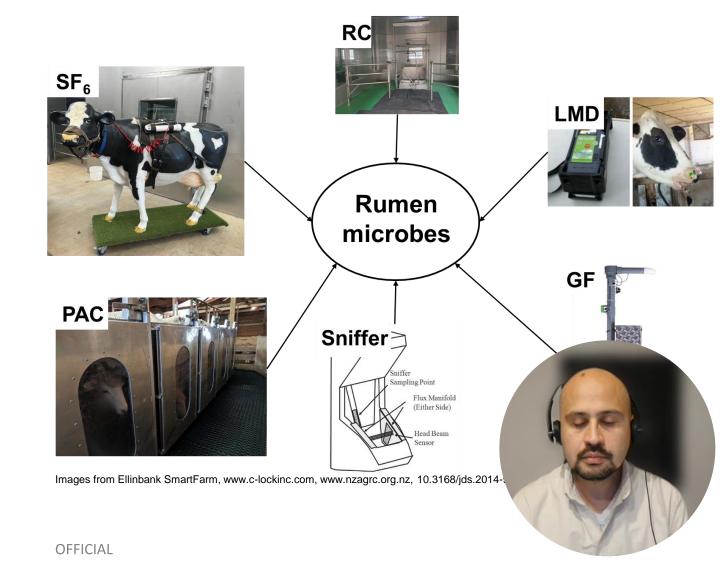
Current and next steps

- 1,500 samples (83 animals) with methane + rumen + faeces
- Even more animals coming
- Not only principal components
- Heritability, genetic correlations, response to selection

Higher genetic correlations are expected

Example of correlations between rumen metagenome and methane

Rumen feature	Phenotypic correlation with methane	Genetic correlation with methane
Bacteria	-0.47 ± 0.04	-0.91 ± 0.20
Genus Methanobrevibacter	0.29 ± 0.05	0.68 ± 0.29


https://doi.org/10.3168/jds.2024-25436

Next step?

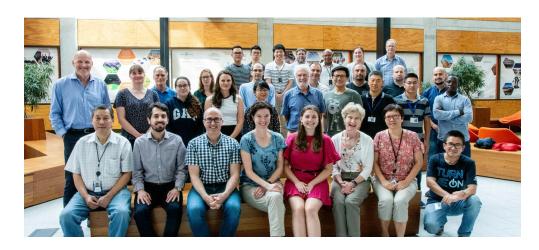
50 + teams 25 countries >20K cattle and sheep

Some with faecal samples for further studies out of microHub

Take home messages

Encouraging results (methane-faeces phenotypic correlations up to 0.35)

Higher genetic correlations are expected

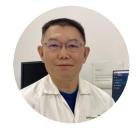

Microbes from faeces and rumen are associated

Current and next steps:

- Include more animals
- Analyse more phenotypes from microbes
- Estimate genetic parameters

Acknowledgements

Computational Biology Group



Molecular Genetics Goup

Thanks

Take home messages

Encouraging results (methane-faeces phenotypic correlations up to 0.35)

Higher genetic correlations are expected

Microbes from faeces and rumen are associated

Current and next steps:

- Include more animals
- Analyse more phenotypes from microbes
- Estimate genetic parameters

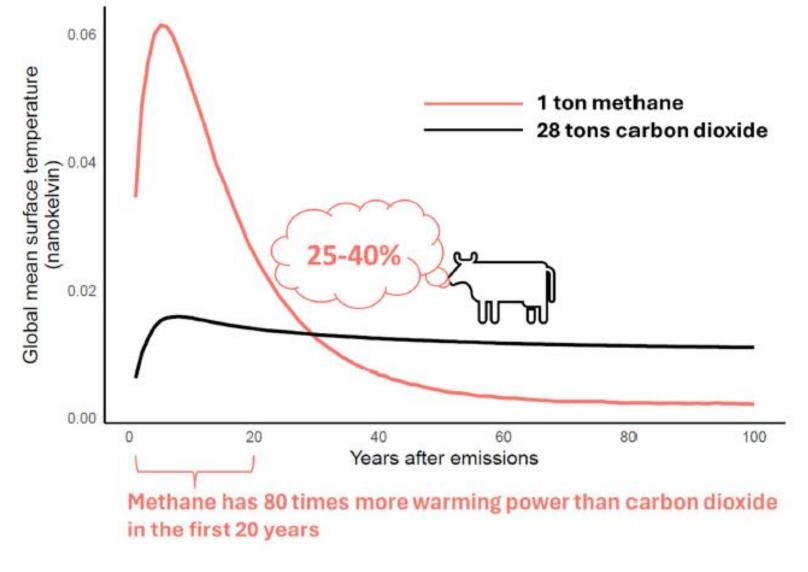


Figure 2. Impact of methane and carbon dioxide emissions on global surface warming (IPCC, 2021, Azar et al., 2023). The effect of methane is more intense and shorter than the effect of carbon dioxide (Mar et al., 2022). Enteric methane emissions from ruminants contributed with up to 40% of anthropogenic methane emissions (Moss et al., 2000, EPA, 2022).

https://www.fao.org/in-action/enteric-methane/background/en/

https://asm.org/articles/2023/june/rumi nant-methanogens-as-a-climatechange-target

Table 1. phenotypic correlations (r_p) ± standard error (SE), and corresponding p-value between the first five principal components (PC1 to PC5) calculated from the content of features from the faecal and ruminal metagenome and methane production (MeP). FE: Fixed effects with significant effect fitted in the prediction model. KO: KEGG Orthology groups. COG: Clusters of Orthologous Genes. Variance explained by each principal component is shown in parenthesis.

Features	Faeces	Rumen	FE	$r_p \pm SE$	<i>p</i> -value
Genera	PC1 (16%)	PC3 (6%)	-	-0.52 ± 0.16	1.2×10^{-3}
Genera	PC2 (13%)	PC2 (15%)	parity,ECM	-0.48 ± 0.15	1.4×10^{-3}
Genera	PC4 (7%)	PC3 (6%)	experiment,DMI, parity,	-0.43 ± 0.17	1.1×10^{-2}
_			ECM		2
Genera	PC5 (6%)	PC1 (29%)	-	-0.40 ± 0.18	2.6×10^{-2}
Genera	PC5 (6%)	PC2 (15%)	experiment,DMI, parity,	-0.47 ± 0.16	3.3×10^{-3}
_	D C = (c c ()	DOF (404)	ECM	0.00	2 2 4 2 - 2
Genera	PC5 (6%)	PC5 (4%)	parity	-0.37 ± 0.17	3.0×10^{-2}
KO	PC2 (11%)	PC3 (6%)	experiment,ECM	-0.35 ± 0.17	4.0×10^{-2}
KO	PC3 (7%)	PC1 (46%)	experiment,DMI,ECM	-0.35 ± 0.17	4.0×10^{-2}
KO	PC3 (7%)	PC2 (9%)	DMI, parity	-0.46 ± 0.16	4.0×10^{-3}
KO	PC5 (4%)	PC1 (46%)	experiment,parity	-0.62 ± 0.12	2.4×10^{-7}
COG	PC2 (11%)	PC3 (7%)	DMI,parity,ECM	-0.37 ± 0.18	4.0×10^{-2}
COG	PC4 (5%)	PC3 (7%)	DMI,parity	-0.39 ± 0.17	2.2×10^{-2}
COG	PC5 (5%)	PC1 (29%)	experiment	-0.34 ± 0.17	4.6×10^{-2}
Features	Faeces	Final trait	FE	$\mathbf{r}_{\mathbf{p}} \pm \mathbf{S}\mathbf{E}$	<i>p</i> -value
Genera	PC5 (6%)	MeP	experiment	0.35 ± 0.18	5.2×10^{-2}
Features	Rumen	Final trait	FE	$\mathbf{r_p} \pm \mathbf{SE}$	<i>p</i> -value
Genera	PC4 (5%)	MeP	-	0.37 ± 0.20	6.4×10^{-2}