Section 20: Proxies
NOTE: This version of Section 20 has been approved by the working group's Chair. Please be aware that further revisions may occur before final review and approval by the Board and ICAR members per the Approval of Page Process.
Introduction
Large-scale measurements of enteric CH4 emissions from dairy cows are needed for effective monitoring of strategies to reduce the carbon footprint of milk production, as well as for incorporation of CH4 emissions into breeding programs. However, measurements on a sufficiently large scale are difficult and expensive. Proxies for CH4 emissions can provide an alternative, but each approach has limitations. Negussie et al. (2019)[1] recently showed the potential of proxies proxies that are easy to record in the farm. These proxies can be gathered in most farms and are a realistic threshold accuracy that can be obtained without more fancy proxies. Several techniques have been developed for the measurement of CH4 emissions from ruminants, with varying degrees of accuracy (see reviews by Cassandro et al., 2013[2] and Hammond et al., 2016A[3]), but routine individual measurements on a large scale (a requisite for genetic selection) have proven to be difficult and expensive (Pickering et al., 2015[4]; Negussie et al., 2016[5]). Therefore, identifying proxies (i.e. indicators or indirect traits) that are correlated to CH4 emission, but which are easy and relatively low-cost to record on a large scale, is a much needed alternative. Proxies might be less accurate, but could be measured repeatedly to reduce random noise. The (potential) proxies range from simple and low-cost measurements such as body weight, to high-throughput milk MIR, to more demanding measures like rumen morphology, rumen metabolites or microbiome profiling.
Combining proxies that are easy to measure and cheap to record could provide predictions of CH4 emissions that are sufficiently accurate for selection and management of cows with low CH4 emissions.
Available Proxies
A large array of CH4 proxies differing widely in accuracy and applicability under different conditions have been reported. The ideal proxy would be highly phenotypically and genetically correlated with CH4 emissions and could easily, and potentially repeatedly, be measured on a large scale. A systematic summary and assessment of existing knowledge is needed for the identification of robust and accurate CH4 proxies for future use. Table 5 summarizes proxies for CH4 production, and Table 6 summarizes results from combining proxies to improve predictability of proxies for CH4 prediction.
Proxy | Description / conclusion | Reference |
---|---|---|
(1) Feed intake and feeding behavior | ||
Dry Matter Intake (DMI) | DMI predict MeP with R2= 0.06-0.64, and ME intake predict MeP with R2= 0.53-0,55 | Ellis et al. (2007);[6]
Mills et al. (2003)[7]; Negussie et al. (2019)[8] |
Gross Energy intake (GE) | Predict MeP with RMSPE= 3.01. | Moraes et al. (2014)[9] |
Feeding behavior | Magnitude and direction of relation to MeP varies across studies | Nkrumah et al. (2006);[10]
Jonker et al., 2014[11] |
Rumination time | High rumination relates to more milk, consume more concentrate and produce more CH4, lower RMP and MeI | Watt et al. (2015)[12];
López- Paredes et al. (2020)[13] |
Rumen microbiome | The metagenome can predict DMI, and classify high vs low intakes | Delgado et al. (2019)[14] |
(2) Rumen function, metabolites and microbiome | ||
Dietary antimethanogenic compounds | Inhibitors of the enzyme methyl coenzyme-M reductase: bromochoromethane; chloroform; 3- nitrooxypropanol (not always) | Denman et al., 2007;[15]
Knight et al., 2011;[16] Haisan et al., 2014[17]; Romero-Perez et al., 2014[18] |
Dietary antimicrobial compounds | Induce reductions in both MeP and methanogens numbers: nitrates, anacardic acid (cashew nut shell liquid), monensin, isobutyrate | Iwamoto et al., 2002;[19]
Kubo et al., 1993[20]; van Zijderveld et al., 2010[21]; Veneman et al., 2015[22]; Shinkai et al., 2012[23]; Wang et al., 2015[24] |
Rumen microbiome profile | High Fibrobacteres, Quinella ovalis and Veillonellaceae and low Ruminococcaceae, Lachnospiraceae and Clostridiales associate with low- CH4 phenotypes and high propionate
Protozoa concentration |
Kittelmann et al., 2014[25];
Wallace et al., 2014[26]; Sun et al., 2015[27]; Guyader et al., 2014[28] |
Rumen microbiome profile | Predict MeP with R2 up to 0.55 | Ross et al. 2013a[29];
Ross et al. (2013b)[30] |
Microbial genes | 20 (out of 3970 identified) related to CH4 emissions | Roehe et al. (2016)[31] |
Rumen volume (Xray Computed Tomography) and retention time | Low-MeY sheep had smaller rumens. Faster passage= less time to ferment substrate - explained 28% of variation in MeP | Pinares Patiño et al., 2003[32];
Goopy et al., 2014[33]; Okine et al. (1989)[34] |
Blood triiodothyronine concentration | Reduced MeY | Barnett et al. (2012)[35] |
Acetate to propionate ratio in ruminal fluid | Positively associated with CH4 emissions, but not confirmed in all studies, sometimes opposite relation | Mohammed et al., 2011;[36]
Fievez et al., 2012[37]; Chung et al., 2011[38]; Van Zijderveld et al., 2010[39] |
(3) Milk production and composition | ||
Modelling approach | Doubling milk production only adds 5 kg to the MeP and so greatly reduces MeY | Kirchgessner et al. (1995)[40];
Hristov et al. (2014)[41] |
Milk fat content | key explanatory variable for predicting CH4: A moderate negative genetic correlation with infrared predicted
MeI: correlations MeP = 0,08 and MeI = - 0.13 |
Moraes et al. (2014)[42];
Kandel et al., 2014A[43], B[44]; Vanlierde et al. (2015)[45] |
Milk fat content | A positive relationship between VFA proportions and methanogenesis is expected as a consequence of the common biochemical pathways; Dietary unsaturated fatty acids are negatively associated with CH4 emissions | Vlaeminck et al., 2006[46];
Van Lingen et al., 2014[47] |
Milk protein yield | Correlation with Mel = - 0.47 or -0.09, MeP = 0.53 | Kandel et al. (2014)[43];
Vanlierde et al. (2015)[45] |
Lactose | Variable correlations: MeP = 0,33; MeI = - 0.21; R = 0.19 for CH4 emission | Miettinen and Huhtanen (1996)[48];
Dehareng et al. (2012)[49] |
Somatic cell score | Genetic correlation with infrared predicted MeI: R = 0.07 | Kandel et al. (2014A[43], B[44]) |
Prediction equations Milk FA and CH4 emissions, including from MIR data | R² ranged between 47 and 95%; relationships between the individual milk FA and MeP differed considerably and the correlations between CH4 and milk FA vary throughout the lactation | Chilliard et al. (2009)[50];
Delfosse et al. (2010)[51]; Castro-Montoya et al. (2011)[52]; Dijkstra et al. (2011)[53]; Kandel et al. (2013)[54]; Mohammed et al. (2011)[36]; Van Lingen et al. (2014)[47]; Williams et al. (2014)[55]; Dijkstra et al. (2016)[56]; Rico et al. (2016)[57]; Van Gastelen and Dijkstra (2016)[58]; Vanrobays et al. (2016);[59] Bougoin et al., (2019)[60] |
(4) Hind-gut and feces | ||
Whole tract digestibility (potential as supporting factors in the prediction of enteric CH4 emissions) | Main effects relate to rumen (see above), but energy digestibility as a supporting factor to GE intake improved the accuracy of CH4 prediction, despite the fact that there was no direct linear relationship between energy digestibility and MeY and in % of GE intake | Yan et al., 2009 C[61] |
Ratio of acetic and butyric acid divided by propionic acid | Methane yield positive relation | Moss et al., 2000[62] |
(5) Whole animal measurements | ||
Body weight and conformation | Prediction models; primary predictor for enteric MeP | Moraes et al. (2014)[9];
Holter and Young, 1992; [63] Yan et al., 2009[61] |
Body weight | Relationship with MeI: r = 0.44; relationship between body weight and rumen capacity | Antunes-Fernandes et al. (2016)[64];
Demment and Van Soest, 1985[65] |
Body weight | Key explanatory variable for enteric MeP | No reference available |
Conformation traits: affects enteric MeP | Indicators for rumen volume (via feed intake and rumen passage rates); BCS | Agnew and Yan, 2000[66] |
Lactation stage | Complementary proxy | Vanlierde et al. (2015)[45] |
Table 5. Available methane proxies include: (1) feed intake and feeding behaviour, (2) rumen function, metabolites and microbiome, (3) milk production and composition, (4) hind-gut and faeces, and (5) measurements at the level of the whole animal. It is evident that no single proxy offers a good solution in terms of all of these attributes, though the low cost and high throughput make milk MIR a good candidate for further work on refining methods, improving calibrations and exploring combinations with other proxies.
- ↑ Negussie, E., González Recio, O., de Haas, Y., Gengler N., Soyeurt, H., Peiren, N., Pszczola, M., Garnsworthy, P., Battagin, M., Bayat, A., Lassen, J., Yan, T., Boland, T., Kuhla, B., Strabel, T., Schwarm, A., Vanlierde, A., and Biscarini, F. 2019. Machine learning ensemble algorithms in predictive analytics of dairy cattle methane emission using imputed versus non-imputed datasets. 7th GGAA – Greenhouse Gas and Animal Agriculture Conference held from August 4th to 8th, Iguassu Falls/Brazil. Oral communication, Book of Abstracts Page 40. http://www.ggaa2019.org/sites/default/files/proceedings-ggaa2019.pdf
- ↑ Cassandro, M., Mele, M., Stefanon, B.. 2013. Genetic aspects of enteric methane emission in livestock ruminants. Italian J. Anim. Sci. 12:e73: 450-458.
- ↑ Hammond, K.J., Crompton, L.A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D.R., O’Kiely, P., Kebreab, E., Eugenè, M.A., Yu, Z., Shingfield, K.J., Schwarm, A., Hristov, A.N., and Reynolds, C.K. 2016A. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 219:13–30. doi:10.1016/j.anifeedsci.2016.05.018.
- ↑ Pickering, N.K., Oddy, V.H., Basarab, J.A., Cammack, K., Hayes, B J., Hegarty, R.S., McEwan, J.C., Miller, S., Pinares, C., and de Haas, Y. 2015. Invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9:1431-1440.
- ↑ Negussie E., Lehtinen, J., Mäntysaari, P., Liinamo, A-E., Mäntysaari, E., and Lidauer, M.. 2016. Non-invasive individual methane measurements in dairy cows using photoacoustic infrared spectroscopy technique. 6th Greenhouse Gases Animal Agriculture Conference (GGAA2016) 14-18 February 2016. Melbourne, Australia. Abstract. p62.
- ↑ Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K., and France, J. 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456–3466.
- ↑ Mills, J.A.N., Kebreab, E., Yates, C.M., Crompton, L.A., Cammell, S.B., Dhanoa, M.S., Agnew, R.E., and France, J. 2003. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 81:3141–3150.
- ↑ Negussie, E., González Recio, O., de Haas, Y., Gengler N., Soyeurt, H., Peiren, N., Pszczola, M., Garnsworthy, P., Battagin, M., Bayat, A., Lassen, J., Yan, T., Boland, T., Kuhla, B., Strabel, T., Schwarm, A., Vanlierde, A., and Biscarini, F. 2019. Machine learning ensemble algorithms in predictive analytics of dairy cattle methane emission using imputed versus non-imputed datasets. 7th GGAA – Greenhouse Gas and Animal Agriculture Conference held from August 4th to 8th, Iguassu Falls/Brazil. Oral communication, Book of Abstracts Page 40. http://www.ggaa2019.org/sites/default/files/proceedings-ggaa2019.pdf
- ↑ 9.0 9.1 Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., and Kebreab, E. 2014. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 20:2140–2148.
- ↑ Nkrumah, J.D., Okine, E.K., Mathison, G.W., Schmid, K., Li, C., Basarab, J.A., Price, M.A., Wang, Z., and Moore, S.S. 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84:145-153.
- ↑ Jonker, A., Molano, G., Antwi, C., Waghorn, G.. 2014. Feeding lucerne silage to beef cattle at three allowances and four feeding frequencies affects circadian patterns of methane emissions, but not emissions per unit of intake. Anim. Prod. Sci.54:1350-1353.
- ↑ Watt, L.J., Clark, C.E.F., Krebs, G.L., Petzel, C.E., Nielsen, S., and Utsumi, S.A. 2015. Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 98:7248–7263.
- ↑ Lopez-Paredes, J., Goiri, I., Atxaerandio, R., García-Rodríguez, A., Ugarte, E., Jiménez-Montero, J.A., Alenda, R and González-Recio, O. 2020. Mitigation of greenhouse gases in dairy cattle via genetic selection (i): Genetic parameters of direct methane using non-invasive methods and its proxies. J. Dairy Sci. 103.
- ↑ Delgado, B., Bach A., Guasch I., González C, Elcoso G., Pryce J.E., Gonzalez-Recio O. (2019).Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Scientific Reports 9: 11. doi:10.1038/s41598-018-36673-w
- ↑ Denman, S.E., Tomkins, N.W., and McSweeney, C.S. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322.
- ↑ Knight, T., Ronimus, R.S., Dey, D., Tootill, C., Naylor, G., Evans, P., Molano, G., Smith, A., Tavendale, M., Pinares-Patiño, C.S., and Clark, H. 2011. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim. Feed Sci. Technol. 166-167:101-112.
- ↑ Haisan, J., Sun, Y., Guan, L.L., Beauchemin, K.A., Iwaasa, A., Duval, S., Barreda, D.R., and Oba, M. 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97:3110-3119.
- ↑ Romero-Perez, A., Okine, E.K., McGinn, S.M., Guan, L.L., Oba, M., Duval, S.M., Kinderman,n M., and Beauchemin, K.A. 2014. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J. Anim. Sci. 92:4682-4693.
- ↑ Iwamoto, M., Asanuma, N., and Hin,o T. 2002. Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe. 8:209-215.
- ↑ Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., Ohta, S., and Kamikawa, T. 1993. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 41:1016-1019.
- ↑ Van Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R A., and Perdok, H.B. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866.
- ↑ Veneman, J.B., Muetzel, S., Hart, K.J., Faulkner, C.L., Moorby, J.M., Perdok, H.B., and Newbold, C.J. 2015. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows? PLoS ONE 10(10): e0140282. doi: 10.1371/journal.pone.0140282
- ↑ Shinkai, T., Enishi, O., Mitsumori, M., Higuchi, K., Kobayashi, Y., Takenaka, A., Nagashima, K., and Mochizuki, M. 2012. Mitigation of methane production from cattle by feeding cashew nut shell liquid. J. Dairy Sci. 95:5308-5316.
- ↑ Wang, C., Liu, Q., Zhang, Y.L., Pei, C.X., Zhang, S.L., Wang, Y.X., Yang, W.Z., Bai, Y.S., Shi, Z.G., and Liu, X.N. 2015. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. J. Anim. Physiol. Anim. Nutr. (Berl). 99:123-131.
- ↑ Kittelmann, S., Pinares-Patiño, C.S., Seedorf, H., Kirk, M.R., Ganesh, S., McEwan, J.C., and Janssen, P.H. 2014. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One 9:e103171.
- ↑ Wallace, R. ., Rooke, J A., Duthie, C.-A., Hyslop, J.J., Ross, D.W., McKain, N., de Souza, S.M., Snelling, T.J., Waterhouse, A., and Roehe, R. 2014. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep. 4:5892.
- ↑ Sun, X., Henderson, G., Cox, F., Molan,o G., Harrison, S.J., Luo, D., Janssen, P.H., and Pacheco, D. 2015. Lambs Fed Fresh Winter Forage Rape (Brassica napus L.) Emit Less Methane than Those Fed Perennial Ryegrass (Lolium perenne L.), and Possible Mechanisms behind the Difference. PLoS One 10(3):e0119697: DOI: 10.1371/journal.pone.0119697
- ↑ Guyader, J., Eugène, M., Nozière, P., Morgavi, D.P., Doreau, M., and Martin, C. 2014. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal 8:1816-1825.
- ↑ Ross, E. M., P.J . Moate, L.C. Marett, B.G. Cocks and B.J. Hayes. 2013a. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J. Dairy Sci. 96:6030–6046.
- ↑ Ross, E. M., Moate, P. J., Marett, L.C., Cocks, B.G., and Hayes, B.J. 2013b. Metagenomic Predictions: From Microbiome to Complex Health and Environmental Phenotypes in Humans and Cattle. PLoS One DOI: 10.1371/journal.pone.0073056.
- ↑ Roehe R., Dewhurst, R.J., Duthie, C-A., Rooke, J.A., McKain, N., Ross, D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M., and Wallace, R.J. 2016. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS Genet 12(2): e1005846. doi:10.1371/journal.pgen.1005846.
- ↑ Pinares-Patiño C.S., Hickey, S.M., Young, E.A., Dodds, K.G., MacLean, S., Molano, G., Sandoval, E., Kjestrup, H., Harland, R., Pickering, N.K., and McEwan, J.C. 2013. Heritability estimates of methane emissions from sheep. Animal 7: 316–321.
- ↑ Goopy, J.P., Donaldson, A., Hegarty, R., Vercoe, P.E., Haynes, F., Barnett, M., and Oddy, V.H. 2014. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 111:578-585.
- ↑ Okine, E. ., Mathiso,n G.W., and Hardin, R.T. 1989. Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle. J. Anim. Sci. 67:3388–3396.
- ↑ Barnett, M.C., Goopy, J.P., McFarlane, J.R., Godwin, I.R., Nolan, J.V., and Hegarty, R.S. (2012). Triiodothyronine influences digesta kinetics and methane yield in sheep. Anim. Prod. Sci. 52:572-577.
- ↑ 36.0 36.1 Mohammed, R., McGinn, S.M., and Beauchemin, K.A. 2011. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci. 94:6057–6068.
- ↑ Fievez V., Colma,n E., Castro-Montoya, J.M., Stefanov, I., and Vlaeminck, B. 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function – An update. Anim. Feed. Sci. Technol. 172:51–65.
- ↑ Chung, Y.-H., Walker, N.D., McGinn, S.M., and Beauchemin, K.A. 2011. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. J. Dairy Sci. 94:2431–2439.
- ↑ Van Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R A., and Perdok, H.B. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866.
- ↑ Kirchgessner M., Windisch, W., and Muller, H.L. 1995. Nutritional factors for the quantification of methane production. In: Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Proceedings 8th International Symposium on Ruminant Physiology (eds W. Von Engelhardt, S. Leonhard-Marek, G. Breves and D. Giesecke). Reproduction Proceedings 8th International Symposium on Ruminant Physiology. Ferdinand Enke Verlag, Stuttgart, Germany. pp. 333-348.
- ↑ Hristov, A.N., Johnson, K.A., and Kebreab, E, 2014. Livestock methane emissions in the United States. Proc. Natl. Aacad. Sci. 111:E1320; doi:10.1073/pnas.1401046111
- ↑ Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., and Kebreab, E. 2014. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 20:2140–2148.
- ↑ 43.0 43.1 43.2 Kandel, P.B., Vanderick, S., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E., Soyeurt, H., and Gengler, N. 2014A. Consequences of selection for environmental impact traits in dairy cows. Page 19. (http://orbi.ulg.ac.be/bitstream/2268/164402/164401/NSABS162014_poster_Purna_abstract.pdf) I:n Proc. 19th National symposium on applied biological sciences, Gembloux, Belgium.
- ↑ 44.0 44.1 Kandel, P.B., Vanderick, S., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E., Soyeur,t H., and Gengler, N. 2014B. Consequences of selection for environmental impact traits in dairy cows. In: 10th World Congress on Genetics Applied to Livestock Production (WCGALP), 17-22 August, 2014. Vancouver, Canada.
- ↑ 45.0 45.1 45.2 Vanlierde, A., Vanrobays, M.L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., Lewis, E., Deighton, M.H., Grandl, F., Kreuzer, M., Grendler, B., Dardenne, P., and Gengler, N. 2015. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 98:5740–5747.
- ↑ Vlaeminck, B., Fievez, V., Cabrita, A.R.J., Fonseca, A.J.M., and Dewhurst, R.J. 2006. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131:389–417.
- ↑ 47.0 47.1 Van Lingen H.J., Crompton, L.A., Hendriks, W.H., Reynolds, C.K., Dijkstra, J. 2014. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy Sci. 97:7115-7132.
- ↑ Miettinen, H., and Huhtanen, P. 1996. Effects of the ration of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. J. Dairy Sci. 79:851–861.
- ↑ Dehareng, F., Delfosse, C., Froidmont, E., Soyeurt, H., Martin, C., Gengler, N., Vanlierde, A., and Dardenne, P. 2012. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal 6:1694-701.
- ↑ Chilliard Y., Martin ,C., Rouel, J., and Doreau, M. 2009. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 92:5199-5211.
- ↑ Delfosse, O., Froidmont, E., Fernandez Pierna, J. A., Martin, C., and Dehareng, F. 2010. Estimation of methane emissions by dairy cows on the basis of milk composition. In: Greenhouse Gases and Animal Agriculture Conference. 2010; GGAA2010: 4. Greenhouse Gases and Animal Agriculture Conference, Banff, CAN, 2010-10-03-2010-10-08, 60-61.
- ↑ Castro Montoya, J., Bhagwat, A.M., Peiren, N., De Campeneere, S., De Baets, B., and Fievez, V. 2011. Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle. Anim. Feed Sci. Technol.166:596–602.
- ↑ Dijkstra, J., van Zijderveld, S.M., Apajalahti, J.A., Bannink, A., Gerrits, W.J.J., Newbold, J.R., Perdok, H.B.,, and Berends, H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 166–167:590–595.
- ↑ Kandel, P.B., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E., Dardenne, P., Lewis, E., Buckley, F., Deighton, M.H., McParland, S. and Gengler, N., 2013. Genetic parameters for methane emissions predicted from milk mid-infrared spectra in dairy cows. J. Dairy Sci. 95(E-1):p.388.
- ↑ Williams, S.R.O., Williams, B., Moate, P.J., Deighton, M.H., Hannah, M.C., and Wales, W.J. 2014. Methane emissions of dairy cows cannot be predicted by the concentrations of C8:0 and total C18 fatty acids in milk. Anim. Prod. Sci. 54:1757–1761. http://dx.doi.org/10.1071/AN14292.
- ↑ Dijkstra, J., van Zijderveld, S.M., Apajalahti, J.A., Bannink, A., Gerrits, W.J.J., Newbold, J.R., Perdok, H.B.,, and Berends, H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 166–167:590–595.
- ↑ Rico D.E., Chouinard, P.Y., Hassanat, F., Benchaar, C., and Gervais, R. 2016. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal 10:203-211. doi:10.1017/S1751731115001949
- ↑ Van Gastelen, S., and Dijkstra, J.. 2016. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J. Sci. Food Agric. 96:3963-3968. DOI: 10.1002/jsfa.7718.
- ↑ Vanrobays, M.-L., Bastin, C., Vandenplas, J., Hammami, H., Soyeurt, H., Vanlierde, A., Dehareng, F., Froidmont, E., and Gengler, N. 2016. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra. J. Dairy Sci. 99:1–14. http://dx.doi.org/10.3168/jds.2015-10646
- ↑ Bougouin, A., Appuhamy, J.A.D.R.N., Ferlay, A., Kebreab, E., Martin, C., Moate, P.J., Benchaar, C., Lund, P., and Eugène, M. 2019. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis. J. Dairy Sci. 102:10616–10631. DOI: http://doi.org/10.3168/jds.2018-15940
- ↑ 61.0 61.1 Yan, T., Porter, M.G., and Mayne, S.C. 2009. Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 3:1455-1462.
- ↑ Moss A.R., Jouany, J.P., and Newbold, J. 2000. Methane production by ruminants: Its contribution to global warming. Annal. Zootech. 49:231-253.
- ↑ Holter J.B., and Young, A.J. 1992. Methane production in dry and lactating Holstein cows. J. Dairy Sci. 75:2165–2175.
- ↑ Antunes-Fernandes, E.C., van Gastelen, S., Dijkstra, J., Hettinga K.A., and Vervoort, J. 2016. Milk metabolome relates enteric methane emission to milk synthesis, and energy metabolism pathways. J. Dairy. Sci. 99:6251-6262.
- ↑ Demment, M.W., and Van Soest, P.J. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125:641–672.
- ↑ Agnew, R.E. and Yan, T. 2000. The impact of recent research on energy feeding systems for dairy cattle. Livest. Prod. Sci. 66:197-215.